#-*- coding:utf-8 -*-
### required libaraied
import os
import matplotlib.image as img
import matplotlib.pyplot as plt
import skimage
from skimage import color, data, transform
from scipy import ndimage
import numpy as np
import tensorflow as tf
from IPython.core.pylabtools import figsize
from natsort import natsorted
import time
import keras
from keras.models import Sequential
from keras.layers import Dense,Flatten,Dropout
from keras.optimizers import Adadelta
from keras import applications
import random
%matplotlib inline

#设置文件目录
Training = r'C:\Users\lcb\fruits-360\Training'
Test = r'C:\Users\lcb\fruits-360\Test'

#获取每类水果中的第五张图像
def load_print_img(root) :
print_img = []
print_label = []
for i in range(len(os.listdir(root))) : #遍历水果种类目录
child1 = os.listdir(root)[i]
child2 = os.listdir(os.path.join(root, child1))
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
path = os.path.join(root, child1, child2[4]) #取出每类的第五张图像
if(path.endswith('.jpg')) :
print_img.append(skimage.data.imread(path))
print_label.append(child1)
return print_img, print_label

#打印每类水果的第五张图像
def print_fruit(print_img, print_label, size) :
plt.figure(figsize(size, size))
for i in range(len(print_img)) :
plt.subplot(11, 7,(i+1)) #图像输出格式为11行7列
plt.imshow(print_img[i]) #打印图像
plt.title(format(print_label[i])) #打印水果种类
plt.axis('off')
plt.show()

#打印水果
print_fruit(load_print_img(Training)[0], load_print_img(Training)[1], 15)

#随机获取水果种类
def get_random_fruits(root, n_classes) :
fruits = []
for i in range(len(os.listdir(root))) : #创建一个1到水果种类总数的list
fruits.append(i)
random_fruits = random.sample(fruits, n_classes) #随机获取n_classes个随机不重复的水果种类
return random_fruits

#获取随机抽取的10类水果的图像
def load(root, random_fruits) :
image_data = [] #存放图像
image_label = [] #存放标签
num_label = [] #存放图像标签码
for i in range(len(random_fruits)) : #遍历水果类型
child1 = os.listdir(root)[i] #第一层子目录(水果种类)
child2 = os.listdir(os.path.join(root, child1)) #第二层子目录(水果图像)
child2 = natsorted(child2) #对第二层目录进行自然数排序,os.listder默认为str排序
for j in range(len(child2)) : #遍历水果图像
path = os.path.join(root, child1, child2[j]) #结合第一二层子目录
if(path.endswith('.jpg')) : #只读取'.jpg'文件(文件后缀是否为'.jpg')
image_data.append(skimage.data.imread(path)) #把文件读取为图像存入image_data
image_label.append(child1) #储存第一层子目录文件名(即水果名)
num_label.append(i) #把第一层子目录文件名的下标作为水果类型的编码
num_label = keras.utils.to_categorical(num_label, n_classes) #把水果类型编码转换为one_hot编码
#print("图片数:{0}, 标签数:{1}".format(len(image_data), len(os.listdir(root))) #输出图片和标签数
return image_data, image_label, num_label

#裁剪图像
def crop(image_data) :
crop_data = []
for i in image_data :
I_crop = skimage.transform.resize(i, (32, 32)) #把图像转换成32*32的格式
crop_data.append(I_crop) #把转换后的图像放入Icrop_data
return crop_data

def fruits_type(random_fruits) :
print('fruits_type:')
for i in random_fruits :
print( os.listdir(Training)[i])

n_classes = 10 #定义水果种类数
#batch_size = 256 #定义块的大小
#batch_num = int(np.array(crop_img).shape[0]/batch_size) #计算取块的次数
x = tf.placeholder(tf.float32,[None, 32, 32, 3]) #申请四维占位符,数据类型为float32
y = tf.placeholder(tf.float32,[None, n_classes]) #申请二维占位符,数据累型为float32
keep_prob = tf.placeholder(tf.float32) #申请一维占位符,数据类型为float32
#epochs=2 #训练次数
dropout=0.75 #每个神经元保留的概率
k_size = 3 #卷积核大小

Weights = {
"conv_w1" : tf.Variable(tf.random_normal([k_size, k_size, 3, 64]), name = 'conv_w1'), \
"conv_w2" : tf.Variable(tf.random_normal([k_size, k_size, 64, 128]), name = 'conv_w2'), \
#"conv_w3" : tf.Variable(tf.random_normal([k_size, k_size, 256, 512]), name = 'conv_w3'), \
"den_w1" : tf.Variable(tf.random_normal([int(32*32/4/4*128), 1024]), name = 'dev_w1'), \
"den_w2" : tf.Variable(tf.random_normal([1024, 512]), name = 'den_w2'), \
"den_w3" : tf.Variable(tf.random_normal([512, n_classes]), name = 'den_w3')
}


bias = {
"conv_b1" : tf.Variable(tf.random_normal([64]), name = 'conv_b1'), \
"conv_b2" : tf.Variable(tf.random_normal([128]), name = 'conv_b2'), \
#"conv_b3" : tf.Variable(tf.random_normal([512]), name = 'conv_b3'), \
"den_b1" : tf.Variable(tf.random_normal([1024]), name = 'den_b1'), \
"den_b2" : tf.Variable(tf.random_normal([512]), name = 'den_b2'), \
"den_b3" : tf.Variable(tf.random_normal([n_classes]), name = 'den_b3')
}

def conv2d(x,W,b,stride=1):
x=tf.nn.conv2d(x,W,strides=[1,stride,stride,1],padding="SAME")
x=tf.nn.bias_add(x,b)
return tf.nn.relu(x)
def maxpool2d(x,stride=2):
return tf.nn.max_pool(x,ksize=[1,stride,stride,1],strides=[1,stride,stride,1],padding="SAME")

def conv_net(inputs, W, b, dropout) :
## convolution layer 1
## 输入32*32*3的数据,输出16*16*64的数据
conv1 = conv2d(x, W["conv_w1"], b["conv_b1"])
conv1 = maxpool2d(conv1, 2)
tf.summary.histogram('ConvLayer1/Weights', W["conv_w1"])
tf.summary.histogram('ConvLayer1/bias', b["conv_b1"])
## convolution layer2
## 输入16*16*64的数据,输出8*8*128的数据
conv2 = conv2d(conv1, W["conv_w2"], b["conv_b2"])
conv2 = maxpool2d(conv2, 2)
tf.summary.histogram('ConvLayer2/Weights', W["conv_w2"])
tf.summary.histogram('ConvLayer2/bias', b["conv_b2"])
## convolution layer3
#conv3 = conv2d(conv2, W["conv_w3"], b["conv_b3"])
#conv3 = maxpool2d(conv3, 2)
#tf.summary.histogram('ConvLayer3/Weights', W["conv_w3"])
#tf.summary.histogram('ConvLayer3/bias', b["conv_b3"])
## flatten
## 把数据拉伸为长度为8*8*128的一维数据
flatten = tf.reshape(conv2,[-1, W["den_w1"].get_shape().as_list()[0]])
## dense layer1
## 输入8192*1的数据,输出1024*1的数据
den1 = tf.add(tf.matmul(flatten, W["den_w1"]), b["den_b1"])
den1 = tf.nn.relu(den1)
den1 = tf.nn.dropout(den1, dropout)
tf.summary.histogram('DenLayer1/Weights', W["den_w1"])
tf.summary.histogram('DenLayer1/bias', b["den_b1"])
## dense layer2
## 1024*1的数据,输出512*1的数据
den2 = tf.add(tf.matmul(den1, W["den_w2"]), b["den_b2"])
den2 = tf.nn.relu(den2)
den2 = tf.nn.dropout(den2, dropout)
tf.summary.histogram('DenLayer2/Weights', W["den_w2"])
tf.summary.histogram('DenLayer2/bias', b["den_b2"])
## out
## 512*1的数据,输出n_classes*1的数据
out = tf.add(tf.matmul(den2, W["den_w3"]), b["den_b3"])
tf.summary.histogram('DenLayer3/Weights', W["den_w3"])
tf.summary.histogram('DenLayer3/bias', b["den_b3"])
return out

def get_data(inputs, batch_size, times):
i = times * batch_size
data = inputs[i : (times+1)*batch_size]
return data

 

def train_and_test(train_x, train_y, test_x, test_y, epochs, batch_size, times = 1) :
# 初始化全局变量
init=tf.global_variables_initializer()
start_time = time.time()
with tf.Session() as sess:
sess.run(init)
# 把需要可视化的参数写入可视化文件
writer=tf.summary.FileWriter('C:/Users\lcb/fruits-360/tensorboard/Fruit_graph' + str(times), sess.graph)
for i in range(epochs):
batch_num = int(np.array(crop_img).shape[0]/batch_size)
sum_cost = 0
sum_acc = 0
for j in range(batch_num):
batch_x = get_data(train_x, batch_size, j)
batch_y = get_data(train_y, batch_size, j)
sess.run(optimizer, feed_dict={x:batch_x,y:batch_y,keep_prob:0.75})
loss,acc = sess.run([cost,accuracy],feed_dict={x:batch_x,y:batch_y,keep_prob: 1.})
sum_cost += loss
sum_acc += acc
#if((i+1) >= 10 and ((i+1)%10 == 0)) :
#print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(loss),"Training accuracy","{:.5f}".format(acc))
result=sess.run(merged,feed_dict={x:batch_x, y:batch_y, keep_prob:0.75})
writer.add_summary(result, i)
arg_cost = sum_cost/batch_num
arg_acc = sum_acc/batch_num
print("Epoch:", '%04d' % (i+1),"cost=", "{:.9f}".format(arg_cost),"Training accuracy","{:.5f}".format(arg_acc))
end_time = time.time()
print('Optimization Completed')
print('Testing Accuracy:',sess.run(accuracy,feed_dict={x:test_x, y:test_y,keep_prob: 1}))
print('Total processing time:',end_time - start_time)

pred=conv_net(x,Weights,bias,keep_prob)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
tf.summary.histogram('loss', cost)
optimizer=tf.train.AdamOptimizer(0.01).minimize(cost)
correct_pred=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_pred,tf.float32))
merged=tf.summary.merge_all()

for i in range(10) :
random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
print("TIMES"+str(i+1))
fruits_type(random_fruits)
print("\n")
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, (i+1))
print("\n\n\n")

vgg_model=applications.VGG19(include_top=False,weights='imagenet')
vgg_model.summary()

bottleneck_feature_train=vgg_model.predict(np.array(crop_img),verbose=1)
bottleneck_feature_test=vgg_model.predict(np.array(crop_test),verbose=1)

print(bottleneck_feature_train.shape,bottleneck_feature_test.shape)

my_model=Sequential()
my_model.add(Flatten())
my_model.add(Dense(512,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(256,activation='relu'))
my_model.add(Dropout(0.5))
my_model.add(Dense(n_classes,activation='softmax'))
my_model.compile(optimizer=Adadelta(),loss="categorical_crossentropy",\
metrics=['accuracy'])
my_model.fit(bottleneck_feature_train,num_label,batch_size=128,epochs=50,verbose=1)

evaluation=my_model.evaluate(bottleneck_feature_test,test_num_label,batch_size=128,verbose=0)
print("loss:",evaluation[0],"accuracy:",evaluation[1])

random_fruits = get_random_fruits(Training, n_classes)
img_data, img_label, num_label = load(Training, random_fruits)
crop_img = crop(img_data)
test_data, test_label, test_num_label = load(Test, random_fruits)
crop_test = crop(test_data)
fruits_type(random_fruits)

optimizer=tf.train.AdadeltaOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adadelta')

optimizer=tf.train.AdagradOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Adagrad')

optimizer=tf.train.FtrlOptimizer(0.01).minimize(cost)
train_and_test(crop_img, num_label, crop_test, test_num_label, 20, 256, 'Ftrl')