|
|
|
|
|
吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示
摘要:#用户注册、登录模块 #数据库脚本 CREATE TABLE usertable( userid number(8) primary key not null , username varchar(50) NULL, password varchar(50) NOT NULL, sex varchar(10) NOT NULL, age number(3) NOT NUL...
阅读全文
吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
摘要:import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data #设置输入参数 batch_size = 128 test_size = 256 # 初始化权值与定义网络结构,建构一个3个卷积层和3个池化层,一个全连接层和一个输出层的卷积神经网络 # 首...
阅读全文
吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
摘要:#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #...
阅读全文
吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集
摘要:import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #构建回归模型,输入原始真实值(group truth),采用sotfmax函数拟合,并定义...
阅读全文
吴裕雄 python 神经网络——TensorFlow实现搭建基础神经网络
摘要:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): #构建权重: in_sizeXout_size大小的矩阵 weights = tf.Var...
阅读全文
吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
摘要:import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data", one_hot=True) # 定义网络的超参数 learning_rate = 0.001 trainin...
阅读全文
吴裕雄 python 神经网络——TensorFlow图片预处理
摘要:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读取 # img_raw = tf.gfile.FastGFile('E:\\myresource\\moutance.jpg','rb').read() img_raw = open('E:\\m...
阅读全文
吴裕雄 python 神经网络——TensorFlow图片预处理调整图片
摘要:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): ''' 随机调整图片的色彩,定义两种处理顺序。 ''' if color_ordering == 0: ima...
阅读全文
吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
摘要:import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层...
阅读全文
吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用...
阅读全文
吴裕雄 python深度学习与实践(18)
摘要:# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle import matplotlib.pyplot as plt def unpickle(filename): import pickle with open(filename, '...
阅读全文
吴裕雄 python深度学习与实践(17)
摘要:import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输入图片数据,类别 x = tf.placeholder('float', [None, 784]) y_ = tf.placeholder('float', [None, 10]) # 输入图片数...
阅读全文
吴裕雄 python深度学习与实践(16)
摘要:import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = np.array([[2,1,1],[3,0,1],[1,1,0]]) def convolve(dateMat,kernel): m,n = dateMat.shape km...
阅读全文
吴裕雄 python深度学习与实践(15)
摘要:import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.plac...
阅读全文
吴裕雄 python深度学习与实践(14)
摘要:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_data = np.random.randn(100).astype(np.float32) x2_data = np.random.randn(100).astype(np.float32) y_da...
阅读全文
吴裕雄 python深度学习与实践(13)
摘要:......................... ......................................................
阅读全文
吴裕雄 python深度学习与实践(12)
摘要:import tensorflow as tf q = tf.FIFOQueue(1000,"float32") counter = tf.Variable(0.0) add_op = tf.assign_add(counter, tf.constant(1.0)) enqueueData_op = q.enqueue(counter) sess = tf.Session() qr = tf...
阅读全文
吴裕雄 python深度学习与实践(11)
摘要:import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6]]) B = A.T.dot(C) AA = np.linalg.inv(A.T.dot(A)) l=AA.dot(B) P=A.dot(l) x=np.linspace(-2,2,10) ...
阅读全文
吴裕雄 python深度学习与实践(10)
摘要:import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print(input2) input2 = input1 sess = tf.Session() print(sess.run(input2)) import tensorflow as tf...
阅读全文
吴裕雄 python深度学习与实践(9)
摘要:import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,inputX) + 1 x = tf.placeholder("float32") y_ = tf.placeholder("float32") weight = tf.Variable(0.25) ...
阅读全文
|
|