A1018 Public Bike Management (30分)

一、技术总结

  1. 这一题,题意的理解十分关键,主要有两个点,在花费时间最少的前提下,一个是在去的路上进行调整,能够带的单车最少优先;如果还是有多条,那么带回单车最少的优先。说明只能在去的路上对车站的车进行调整,回的时候不能够进行调整,试想如果回的时候也可以调整,那么就不会出现第二个限制条件了。
  2. 使用Djikstra+DFS
  3. 同时在每个车站的车数量输入,进行减去Cmax/2,直接对于操作,方便后续操作。具体参考代码处
  4. 对于每个车站多了两个属性,一个是need,一个是remain,need记录到该车站处所欠缺的数量,也就是需要从管理中心调过来车的数量;remain记录到该车站处,多余的车,也就是往回运的车。

二、参考代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 510;
const int INF = 0x3fffffff;
int G[MAXN][MAXN];
int d[MAXN], weight[MAXN], w[MAXN];
vector<int> path, tempPath;
vector<int> pre[MAXN];
bool vis[MAXN] = {false};
int Cmax, n, s, m;
int minNeed = INF, minRemain = INF;
void Djikstra(int s){
	fill(d, d+MAXN, INF);
	d[s] = 0;
	for(int i = 0; i <= n; i++){
		int u = -1, MIN = INF;
		for(int j = 0; j <= n; j++){
			if(vis[j] == false && d[j] < MIN){
				u = j;
				MIN = d[j];
			}
		}
		if(u == -1) return;
		vis[u] = true;
		for(int v = 0; v <= n; v++){
			if(vis[v] == false && G[u][v] != INF){
				if(d[u] + G[u][v] < d[v]){
					d[v] = d[u] + G[u][v];
					pre[v].clear();
					pre[v].push_back(u);
				}else if(d[u] + G[u][v] == d[v]){
					pre[v].push_back(u);
				}
			}
		}
	}
}
void DFS(int v){
	if(v == 0){
		tempPath.push_back(v);
		int need = 0, remain = 0;
		for(int i = tempPath.size()-1; i >= 0; i--){
			int id = tempPath[i];
			if(weight[id] > 0){
				remain += weight[id];
			}else{
				if(remain > abs(weight[id])){
					remain -= abs(weight[id]);
				}else{
					need += abs(weight[id]) - remain;
					remain = 0;
				}
			}

		}
		if(need < minNeed){//优化,如果所需的更少 
			minNeed = need;
			minRemain = remain;
			path = tempPath; 
		}else if(need == minNeed && remain < minRemain){
			//携带数目相同,带回数目变多
			minRemain = remain;
			path = tempPath; 
		}
		tempPath.pop_back();
		return;
	}
	tempPath.push_back(v);
	for(int i = 0; i < pre[v].size(); i++){
		DFS(pre[v][i]);
	}
	tempPath.pop_back();
}
int main(){
	scanf("%d%d%d%d", &Cmax, &n, &s, &m);
	fill(G[0], G[0]+MAXN*MAXN, INF);
	//weight[0] = 0;
	for(int i = 1; i <= n; i++){
		scanf("%d", &weight[i]);
		weight[i] -= Cmax/2;
	}
	int id1, id2, L;
	for(int i = 0; i < m; i++){
		scanf("%d%d%d", &id1, &id2, &L);
		G[id1][id2] = L;
		G[id2][id1] = L;
	}
	Djikstra(0);
	DFS(s);
	int number = path.size()-1;
	printf("%d ", minNeed);
	for(int i = path.size()-1; i >= 0; i--){
		printf("%d", path[i]);
		if(i > 0) printf("->");
	}
	printf(" %d", minRemain);
	return 0;
}
posted @ 2020-03-03 16:44  睿晞  阅读(157)  评论(0编辑  收藏  举报