摘要: 支持向量机是一种分类模型。模型认为,离分类超平面越远的点,判定结果越准确,所以模型的训练目标就是让离分类超平面最近的样本点距离最大。我们先从最基本的线性可分支持向量机(硬间隔支持向量机)开始推导,之后再推广到可以容纳一定误分类点的线性支持向量机(软间隔支持向量机),最后介绍核函数与 SMO 算法。 阅读全文
posted @ 2017-09-10 16:25 TsReaper 阅读(1086) 评论(0) 推荐(0) 编辑