三类常见的可积函数积分

常见可积函数积分

三角有理积分

\(tanx \frac{x}{x} = t\)
\(\int R(sinx,cosx)dx = \int R(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2})\frac{2}{1+t^2}\)

  • 推导公式
  • \(\tan x 与\sin x的转化\)
    \(\tan \frac {x}{2} = t\)

\(sin x = 2 * sin\frac{x}{2} * cos\frac{x}{2}\),分母化成1

\(\frac {2 * sin\frac{x}{2} * cos\frac{x}{2}}{1} = \frac {2 * sin\frac{x}{2} * cos\frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}}\),同除以\(sin\frac{x}{2} * cos\frac{x}{2}\)

=\(\frac {2}{\tan \frac{x}{2}+\cot \frac{x}{2}} = \frac{2}{t + \frac{1}{t}}\)分子分母同乘以t

= \(\frac {2t}{t^2 + 1}\)

  • tanx与cosx
    \(\tan \frac {x}{2} = t\)

同上,
\(cos x = cos^2\frac{x}{2} - sin^2 \frac{x}{2}\)
除以1

\(cos x = \frac {cos^2\frac{x}{2} - sin^2 \frac{x}{2}}{1}\)

\(cos x = \frac {cos^2\frac{x}{2} - sin^2 \frac{x}{2}}{cos^2\frac{x}{2} + sin^2 \frac{x}{2}}\),那么分子分母同时除以\(cos^2 \frac{x}{2}\)

\(end = \frac{1 -t^2}{1 + t^2}\)

img

这种题还得多做

简单无理函数积分

  • 主要目的是化掉根号

这令\(\sqrt[n]{\frac {ax+b}{cx+d}} = t\)然后表达为x为多少,这里的简单是指x的次数为一次,你想下如果为N此,那么开出来就是\(x^N=多少\),最终在开根号,那么就又有根号了

posted @ 2023-04-11 21:17  壹剑霜寒十四州  阅读(176)  评论(0编辑  收藏  举报