醍醐灌顶之-线性代数-矩阵论
醍醐灌顶之-线性代数-矩阵论
书籍的推荐:
线性代数:国内的我觉得李尚志的线性代数和蓝以中的高代简明教程非常好,概念讲解很通俗易懂,学计算技巧的话建议研读许以超的线性代数与矩阵论(第二版),里面有传说中的打洞技巧。龚晟写了本小书《线性代数五讲》,观点很高,阅读时需要有一定代数基础。
国外的最好的书我认为是strang的Linear Algebra and Its Applications 最新是第三版,这本书临睡前看可能兴奋的让人失眠的,其中有侯自新翻译的第2版的译本叫线性代数及其应用。strang在mit讲课视配套的是An Introduction To Linear Algebra,找不到电子版,国内近几年引进的David C Lay的Linear Algebra And Its Applications 与leon的Linear Algebra with Applications都不错。
最近读过的David.Poole的Linear Algebra 内容上同lay的书差不多,但讲解要清晰,是一本难得的好书。
国外的线性代数书籍基本上结合一些数值分析方面的问题,而且讲国内书不常讲的svd,LMS,有时还讲一点伪逆,一般结合应用,讲的非常好,也让人感觉线性代数非常美。
矩阵论:
Meyer C.D的Matrix analysis and applied linear algebra很好懂,可作为线性代数到矩阵论的过渡书籍。
张贤达的《矩阵分析与应用 》与Horn,R.A.的Matrix Analysis 可作为参考手册,经常翻翻不坏。
方保镕的矩阵论书有几章不错,比如广义逆那章。
程云鹏的矩阵论已经出到第3版了(和第2版区别不大),是许多学校的考博参考书,我觉得一般。
矩阵计算:
Watkins D. Fundamentals of Matrix Computations最容易最好看的矩阵计算书籍,千万别错过!
GENE.H.GOLUB 矩阵计算 ,经典名著,网上有评价。
LLOYD N.TREFETHEN的NUMERICAL LINEAR ALGEBRA 也是让人失眠的好书,人邮还引进了JAMES W.DEMMEL的《APPLIED NUMERICAL LINEAR ALGEBRA 》。
G.W stewart有个两卷本的Matrix Algorithms ,如果要深入研究某一算法,应该是值得一翻的,stewart的矩阵计算引论,虽然有点老,还算是一本不错的入门书。
统计矩阵论:
就是和统计学结合的矩阵论书籍,想认真学习统计学的可能绕不过矩阵这一块,有以下几本:
David A. Harville的Matrix Algebra from a Statistics
James E. Gentle的Matrix Algebra Theory, Computations, and Applications in Statistics.pdf
George A. F. Seber的A Matrix Handbook for Statisticians (Wiley Series in Probability andStatistics)
c.r rao的线性统计推断及其应用的第一章有不少统计中需要的矩阵知识,倪国熙和陈希孺为此书写过一本辅导材料-《线性统计与线性代数参考材料》。
其他:
需要深入学习广义逆的目前比较新的有Ben-Israel 的 Generalized Inverses(Springer), 2003出2版了,第一本有译本,图书馆应该都能找到,我记得c.r rao也有一本广义逆专著,可是没见过。
Bellman的那本比较老的Introduction to Matrix Analysis 网上有电子版。
网上有个东南大学的教学视频-《工程矩阵论》,听听还不错,就是线性空间等一些基本的东西讲的比较多,矩阵论方面的太少了。
醍醐灌顶--干货解读
最近复习矩阵论中,又是一堆定理和证明突然发现学了这么常时间的矩阵论、线性代数,记住的只是一堆莫名其妙的定理而已,一些本质的东西都没有搞清楚。
比如,为什么要有矩阵,它仅仅是一堆数的组合吗,集合也是数的组合,为什么不能代替矩阵?
特征值和特征向量的含义是什么?描述的是什么“特征”?
矩阵乘法的含义是什么?
相似变换的“相似”体现在哪?
行列式代表了什么含义?为什么会有这么“怪异”的运算规则?
下面3篇文章是网上找的,觉得讲的比较清楚易懂~~~~~
1:理解矩阵
http://blog.csdn.NET/is01sjjj/archive/2008/09/03/2874132.aspx
2:特征向量的几何含义
http://blog.csdn.Net/lfkupc/archive/2009/09/17/4561564.aspx
顺便补上自己的理解,
特征向量的定义是 Ax =λx,A是线性映射在一组基下的表示。
左边:Ax即为对x做线性变换
右边:λx可以理解为不改变x的方向(不包括另其反向),只对x做一定的拉伸,拉伸倍数为λ;也可以理解为最简单的线性变换:数乘变换
综上:特征向量λ是这么一组(*不是一个)特殊的向量,它们在线性变换A的作用下可以不改变方向,只改变长度
所谓的“特征”,我的理解是:
因为特征向量有很好的性质——在线性变换下不改变方向,这样就可以做为一组参考系(也可以理解为坐标系),用这组参考系去刻画别的向量在 这个线性变换下 所发生的变化,即可以用这组向量线性表示。
这种作用在数学上即表示为谱定律——
谱定律:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,即以下公式:
再进一步说,“变换”可以理解为一种运动——一个点变到另一个点,而 “运动是相对的”,需要有参照系。而特征向量就这组参照系
3:维基百科上的,
http://zh.wikipedia.org/zh/%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F
http://zh.wikipedia.org/zh-cn/%E8%A1%8C%E5%88%97%E5%BC%8F
-------------------------------------------------------------------------------
理解矩阵
(一)
前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。
可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊!
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材 (现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列 式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生 到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了, 因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明 白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一 幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每 搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。
事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公 理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范 畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在 没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。
大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说:
* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合 向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一 次,变成三维的立方阵,是不是更有用?
* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结 到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?
* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不 要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有 直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?
* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?
* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?
* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?
* 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?
这样的一类问题,经常让使用线性代数已经很多年的人都感到为难。就好像大人面对小孩子的刨根问底,最后总会迫不得已地说“就这样吧,到此为止”一 样,面对这样的问题,很多老手们最后也只能用:“就是这么规定的,你接受并且记住就好”来搪塞。然而,这样的问题如果不能获得回答,线性代数对于我们来说 就是一个粗暴的、不讲道理的、莫名其妙的规则集合,我们会感到,自己并不是在学习一门学问,而是被不由分说地“抛到”一个强制的世界中,只是在考试的皮鞭 挥舞之下被迫赶路,全然无法领略其中的美妙、和谐与统一。直到多年以后,我们已经发觉这门学问如此的有用,却仍然会非常迷惑:怎么这么凑巧?
我认为,这是我们的线性代数教学中直觉性丧失的后果。上述这些涉及到“如何能”、“怎么会”的问题,仅仅通过纯粹的数学证明来回答,是不能令提问者 满意的。比如,如果你通过一般的证明方法论证了矩阵分块运算确实可行,那么这并不能够让提问者的疑惑得到解决。他们真正的困惑是:矩阵分块运算为什么竟然 是可行的?究竟只是凑巧,还是说这是由矩阵这种对象的某种本质所必然决定的?如果是后者,那么矩阵的这些本质是什么?只要对上述那些问题稍加考虑,我们就 会发现,所有这些问题都不是单纯依靠数学证明所能够解决的。像我们的教科书那样,凡事用数学证明,最后培养出来的学生,只能熟练地使用工具,却欠缺真正意 义上的理解。
自从1930年代法国布尔巴基学派兴起以来,数学的公理化、系统性描述已经获得巨大的成功,这使得我们接受的数学教育在严谨性上大大提高。然而数学 公理化的一个备受争议的副作用,就是一般数学教育中直觉性的丧失。数学家们似乎认为直觉性与抽象性是矛盾的,因此毫不犹豫地牺牲掉前者。然而包括我本人在 内的很多人都对此表示怀疑,我们不认为直觉性与抽象性一定相互矛盾,特别是在数学教育中和数学教材中,帮助学生建立直觉,有助于它们理解那些抽象的概念, 进而理解数学的本质。反之,如果一味注重形式上的严格性,学生就好像被迫进行钻火圈表演的小白鼠一样,变成枯燥的规则的奴隶。
对于线性代数的类似上述所提到的一些直觉性的问题,两年多来我断断续续地反复思考了四、五次,为此阅读了好几本国内外线性代数、数值分析、代数和数 学通论性书籍,其中像前苏联的名著《数学:它的内容、方法和意义》、龚昇教授的《线性代数五讲》、前面提到的Encounter with Mathematics(《数学概观》)以及Thomas A. Garrity的《数学拾遗》都给我很大的启发。不过即使如此,我对这个主题的认识也经历了好几次自我否定。比如以前思考的一些结论曾经写在自己的 blog里,但是现在看来,这些结论基本上都是错误的。因此打算把自己现在的有关理解比较完整地记录下来,一方面是因为我觉得现在的理解比较成熟了,可以 拿出来与别人探讨,向别人请教。另一方面,如果以后再有进一步的认识,把现在的理解给推翻了,那现在写的这个snapshot也是很有意义的。
因为打算写得比较多,所以会分几次慢慢写。也不知道是不是有时间慢慢写完整,会不会中断,写着看吧。
--------------------------------------------------------------------------
今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。
首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级 的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完 备性,就得到希尔伯特空间。
总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。
我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管 那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,
上面的这些性质中,最最关键的是第4条。第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这 个集合上定义一些结构(关系),并不是说有了这些就算是空间。而第3条太特殊,其他的空间不需要具备,更不是关键的性质。只有第4条是空间的本质,也就是 说,容纳运动是空间的本质特征。
认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变 换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不 过是对应空间中允许的运动形式而已。
因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。
下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:
1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?
2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?
我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:
L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ..., xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取 有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。
L2. 闭区间[a, b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据魏尔斯特拉斯定 理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。这样就把问题归结为L1了。后面就不用再重复了。
所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。这里头大有文章,因为向量表面上只是一列数,但是其实由于它 的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。 这是另一个问题了,这里就不说了。
下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。
线性空间中的运动,被称为线性变换。也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。那么,线性变换如何 表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变 换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。
简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。
是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。(chensh,说你呢!)
可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。
接着理解矩阵。
上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和 物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学, 是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个 连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概 念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖 论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分, 才明白“高等数学是研究运动的数学”这句话的道理。
不过在我这个《理解矩阵》的文章里,“运动”的概念不是微积分中的连续性的运动,而是瞬间发生的变化。比如这个时刻在A点,经过一个“运动”,一下 子就“跃迁”到了B点,其中不需要经过A点与B点之间的任何一个点。这样的“运动”,或者说“跃迁”,是违反我们日常的经验的。不过了解一点量子物理常识 的人,就会立刻指出,量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,具有这样一种跃迁行为。所以说,自然界中并不是没有这种运动现象,只不 过宏观上我们观察不到。但是不管怎么说,“运动”这个词用在这里,还是容易产生歧义的,说得更确切些,应该是“跃迁”。因此这句话可以改成:
“矩阵是线性空间里跃迁的描述”。
可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。这样一说,大 家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。比如说,拓扑变换,就是在拓扑空间里从一个点到另一个 点的跃迁。再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。附带说一下,这个仿射空间跟向量空间是亲兄弟。做计算机图形学的朋友都知道, 尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿 射空间而不是向量空间中进行的。想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东 西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。
一旦我们理解了“变换”这个概念,矩阵的定义就变成:
“矩阵是线性空间里的变换的描述。”
到这里为止,我们终于得到了一个看上去比较数学的定义。不过还要多说几句。教材上一般是这么说的,在一个线性空间V里的一个线性变换T,当选定一组 基之后,就可以表示为矩阵。因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基。线性变换的定义是很简单的,设有一种变换T,使得对于线 性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有:
T(ax + by) = aT(x) + bT(y),
那么就称T为线性变换。
定义都是这么写的,但是光看定义还得不到直觉的理解。线性变换究竟是一种什么样的变换?我们刚才说了,变换是从空间的一个点跃迁到另一个点,而线性 变换,就是从一个线性空间V的某一个点跃迁到另一个线性空间W的另一个点的运动。这句话里蕴含着一层意思,就是说一个点不仅可以变换到同一个线性空间中的 另一个点,而且可以变换到另一个线性空间中的另一个点去。不管你怎么变,只要变换前后都是线性空间中的对象,这个变换就一定是线性变换,也就一定可以用一 个非奇异矩阵来描述。而你用一个非奇异矩阵去描述的一个变换,一定是一个线性变换。有的人可能要问,这里为什么要强调非奇异矩阵?所谓非奇异,只对方阵有 意义,那么非方阵的情况怎么样?这个说起来就会比较冗长了,最后要把线性变换作为一种映射,并且讨论其映射性质,以及线性变换的核与像等概念才能彻底讲清 楚。我觉得这个不算是重点,如果确实有时间的话,以后写一点。以下我们只探讨最常用、最有用的一种变换,就是在同一个线性空间之内的线性变换。也就是说, 下面所说的矩阵,不作说明的话,就是方阵,而且是非奇异方阵。学习一门学问,最重要的是把握主干内容,迅速建立对于这门学问的整体概念,不必一开始就考虑 所有的细枝末节和特殊情况,自乱阵脚。
接着往下说,什么是基呢?这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。就这意思。
好,最后我们把矩阵的定义完善如下:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。就好像我们熟悉的面向对象编程中,一个对象可以有多个引用,每个引用可以叫不同的名字,但都是指的同一个对象。如果还不形象,那就干脆来个很俗的类比。
比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是 一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述, 但是又都不是这头猪本身。
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话。
好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:
若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:
A = P-1BP
线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。俗了一点,不过能让人明白。
而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系。关于这个结论,可以用一种非常直觉的方法来证明(而不是一般教科书上那种形式上的证明),如果有时间的话,我以后在blog里补充这个证明。
这个发现太重要了。原来一族相似矩阵都是同一个线性变换的描述啊!难怪这么重要!工科研究生课程中有矩阵论、矩阵分析等课程,其中讲了各种各样的相 似变换,比如什么相似标准型,对角化之类的内容,都要求变换以后得到的那个矩阵与先前的那个矩阵式相似的,为什么这么要求?因为只有这样要求,才能保证变 换前后的两个矩阵是描述同一个线性变换的。当然,同一个线性变换的不同矩阵描述,从实际运算性质来看并不是不分好环的。有些描述矩阵就比其他的矩阵性质好 得多。这很容易理解,同一头猪的照片也有美丑之分嘛。所以矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个 线性变换。
这样一来,矩阵作为线性变换描述的一面,基本上说清楚了。但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作 为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系 (基)表换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里 很多定理和规则会变得更加清晰、直觉。
(三)
这两篇文章发表于去年的4月。在第二部分结束的时候,我说:
“矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而 作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点 与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。
这个留在下一篇再写吧。
因为有别的事情要做,下一篇可能要过几天再写了。 ”
然而这一拖就是一年半。一年半以来,这两篇粗糙放肆的文章被到处转载,以至于在Google的搜索提示中,我的名字跟“矩阵”是一对关联词汇。这对于学生时代数学一直很差的我来说,实在是令人惶恐的事情。数学是何等辉煌精致的学问!代表着人类智慧的最高成就,是人与上帝对话的语言。而我实在连数学的门都还没进去,不要说谈什么理解,就是稍微难一些的题目我也很少能解开。我有什么资格去谈矩阵这样重要的一个数学概念呢?更何况,我的想法直观是直观,未见的是正确的啊,会不会误人子弟呢?因此,算了吧,到此为止吧,我这么想。
是时不时收到的来信逐渐改变了我的想法。
一年半以来,我收到过不下一百封直接的来信,要求我把后面的部分写出来。这些来信大部分是国内的网友和学生,也有少数来自正在国外深造的朋友,大部分是鼓励,有的是诚挚的请求,也有少数严厉斥责我不守承诺。不管是何种态度,这都表明他们对我这一点点小小的思考成果的鼓励,特别是对于我这种思维的视角和尝试的鼓励。他们在信中让我知道,尽管我的数学水平不高,但是我这种从普通人(而不是数学家)视角出发,强调对数学概念和规则的直觉理解的思路,对于很多人是有益的。也许这条路子在数学中绝非正道,也不会走得很远,但是无论如何,在一定的阶段,对一部分人来说,较之目前数学教材普遍采用的思路,这种方式可能更容易理解一些。既然是可能对一部分人有帮助的事情,那么我就不应该心存太多杂念,应该不断思考和总结下去。
所以,下面就是你们来信要求我写出来的东西。
首先来总结一下前面两部分的一些主要结论:
1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。
2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。
3. 运动是瞬时的,因此也被称为变换。
4. 矩阵是线性空间中运动(变换)的描述。
5. 矩阵与向量相乘,就是实施运动(变换)的过程。
6. 同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。
下面让我们把视力集中到一点以改变我们以往看待矩阵的方式。我们知道,线性空间里的基本对象是向量,而向量是这么表示的:
[a1, a2, a3, ..., an]
矩阵呢?矩阵是这么表示的:
a11, a12, a13, ..., a1n
a21, a22, a23, ..., a2n
...
an1, an2, an3, ..., ann
不用太聪明,我们就能看出来,矩阵是一组向量组成的。特别的,n维线性空间里的方阵是由n个n维向量组成的。我们在这里只讨论这个n阶的、非奇异的方阵,因为理解它就是理解矩阵的关键,它才是一般情况,而其他矩阵都是意外,都是不得不对付的讨厌状况,大可以放在一边。这里多一句嘴,学习东西要抓住主流,不要纠缠于旁支末节。很可惜我们的教材课本大多数都是把主线埋没在细节中的,搞得大家还没明白怎么回事就先被灌晕了。比如数学分析,明明最要紧的观念是说,一个对象可以表达为无穷多个合理选择的对象的线性和,这个概念是贯穿始终的,也是数学分析的精华。但是课本里自始至终不讲这句话,反正就是让你做吉米多维奇,掌握一大堆解偏题的技巧,记住各种特殊情况,两类间断点,怪异的可微和可积条件(谁还记得柯西条件、迪里赫莱条件...?),最后考试一过,一切忘光光。要我说,还不如反复强调这一个事情,把它深深刻在脑子里,别的东西忘了就忘了,真碰到问题了,再查数学手册嘛,何必因小失大呢?
言归正传。如果一组向量是彼此线性无关的话,那么它们就可以成为度量这个线性空间的一组基,从而事实上成为一个坐标系体系,其中每一个向量都躺在一根坐标轴上,并且成为那根坐标轴上的基本度量单位(长度1)。
现在到了关键的一步。看上去矩阵就是由一组向量组成的,而且如果矩阵非奇异的话(我说了,只考虑这种情况),那么组成这个矩阵的那一组向量也就是线性无关的了,也就可以成为度量线性空间的一个坐标系。结论:矩阵描述了一个坐标系。
“慢着!”,你嚷嚷起来了,“你这个骗子!你不是说过,矩阵就是运动吗?怎么这会矩阵又是坐标系了?”
嗯,所以我说到了关键的一步。我并没有骗人,之所以矩阵又是运动,又是坐标系,那是因为——
“运动等价于坐标系变换”。
对不起,这话其实不准确,我只是想让你印象深刻。准确的说法是:
“对象的变换等价于坐标系的变换”。
或者:
“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换。”
说白了就是:
“运动是相对的。”
让我们想想,达成同一个变换的结果,比如把点(1, 1)变到点(2, 3)去,你可以有两种做法。第一,坐标系不动,点动,把(1, 1)点挪到(2, 3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2, 3)了。方式不同,结果一样。
从第一个方式来看,那就是我在《理解矩阵》1/2中说的,把矩阵看成是运动描述,矩阵与向量相乘就是使向量(点)运动的过程。在这个方式下,
Ma = b
的意思是:
“向量a经过矩阵M所描述的变换,变成了向量b。”
而从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:
Ma = b
的意思是:
“有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I的度量下,这个向量的度量结果是b。”
这里的I是指单位矩阵,就是主对角线是1,其他为零的矩阵。
而这两个方式本质上是等价的。
我希望你务必理解这一点,因为这是本篇的关键。
正因为是关键,所以我得再解释一下。
在M为坐标系的意义下,如果把M放在一个向量a的前面,形成Ma的样式,我们可以认为这是对向量a的一个环境声明。它相当于是说:
“注意了!这里有一个向量,它在坐标系M中度量,得到的度量结果可以表达为a。可是它在别的坐标系里度量的话,就会得到不同的结果。为了明确,我把M放在前面,让你明白,这是该向量在坐标系M中度量的结果。”
那么我们再看孤零零的向量b:
b
多看几遍,你没看出来吗?它其实不是b,它是:
Ib
也就是说:“在单位坐标系,也就是我们通常说的直角坐标系I中,有一个向量,度量的结果是b。”
而 Ma = Ib的意思就是说:
“在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!”
这哪里是什么乘法计算,根本就是身份识别嘛。
从这个意义上我们重新理解一下向量。向量这个东西客观存在,但是要把它表示出来,就要把它放在一个坐标系中去度量它,然后把度量的结果(向量在各个坐标轴上的投影值)按一定顺序列在一起,就成了我们平时所见的向量表示形式。你选择的坐标系(基)不同,得出来的向量的表示就不同。向量还是那个向量,选择的坐标系不同,其表示方式就不同。因此,按道理来说,每写出一个向量的表示,都应该声明一下这个表示是在哪个坐标系中度量出来的。表示的方式,就是 Ma,也就是说,有一个向量,在M矩阵表示的坐标系中度量出来的结果为a。我们平时说一个向量是[2 3 5 7]T,隐含着是说,这个向量在 I 坐标系中的度量结果是[2 3 5 7]T,因此,这个形式反而是一种简化了的特殊情况。
注意到,M矩阵表示出来的那个坐标系,由一组基组成,而那组基也是由向量组成的,同样存在这组向量是在哪个坐标系下度量而成的问题。也就是说,表述一个矩阵的一般方法,也应该要指明其所处的基准坐标系。所谓M,其实是 IM,也就是说,M中那组基的度量是在 I 坐标系中得出的。从这个视角来看,M×N也不是什么矩阵乘法了,而是声明了一个在M坐标系中量出的另一个坐标系N,其中M本身是在I坐标系中度量出来的。
回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见?
请看:
Ma = Ib
我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了。
我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解。比如,你画一个坐标系,x轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2, 3)。而让它原形毕露的办法,就是把原来那个坐标系:
2 0
0 3
的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了。保持点不变,那个向量现在就变成了(2, 3)了。
怎么能够让“x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3”呢?就是让原坐标系:
2 0
0 3
被矩阵:
1/2 0
0 1/3
左乘。而这个矩阵就是原矩阵的逆矩阵。
下面我们得出一个重要的结论:
“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”
再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。
如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。
在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样。简单地说,是因为:
1. 从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换。
2. 从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵。
3. 至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算。我把这个结论的推导留给感兴趣的朋友吧。应该说,其实到了这一步,已经很容易了。
综合以上1/2/3,矩阵的乘法就得那么规定,一切有根有据,绝不是哪个神经病胡思乱想出来的。
我已经无法说得更多了。矩阵又是坐标系,又是变换。到底是坐标系,还是变换,已经说不清楚了,运动与实体在这里统一了,物质与意识的界限已经消失了,一切归于无法言说,无法定义了。道可道,非常道,名可名,非常名。矩阵是在是不可道之道,不可名之名的东西。到了这个时候,我们不得不承认,我们伟大的线性代数课本上说的矩阵定义,是无比正确的:
“矩阵就是由m行n列数放在一起组成的数学对象。”
好了,这基本上就是我想说的全部了。还留下一个行列式的问题。矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积。对于这一点,我只能感叹于其精妙,却无法揭开其中奥秘了。也许我掌握的数学工具不够,我希望有人能够给我们大家讲解其中的道理了。
我不知道是否讲得足够清楚了,反正这一部分需要您花些功夫去推敲。
此外,请大家不必等待这个系列的后续部分。以我的工作情况而言,近期内很难保证继续投入脑力到这个领域中,尽管我仍然对此兴致浓厚。不过如果还有(四)的话,可能是一些站在应用层面的考虑,比如对计算机图形学相关算法的理解。但是我不承诺这些讨论近期内会出现了。
其他的直觉式理解:
如果不从线性变换来看,单纯从行列式本身来看,二阶行列式便是一个有向平行四边形的面积,三阶行列式便是一个有向平行六面体的体积。
其实,线性代数就是n维空间的解析几何,解析几何就是三维空间的线性代数。(李尚志经典思想,我拿过来引用。)
比如,行列式可表示平行四边形或平行六面体的有向面积/体积,因为平行四边形和平行六面体实际上分别是平面和空间中另一组基底构成的面积元/体积元。
比如,行列式为零,表示线性变换是奇异的,即把原空间的体积元变成零了,一一对应就不存在了
又比如,导数实际上是线性变换 (微分实际上是两个切空间之间的线性变换,比如一元函数实际上是一维实轴到一维切线之间的线性变换,得到的斜率只是一个数,但实际上是1x1矩阵),于是积分变换中的Jacob行列式实际上是此线性变换的行列式,它的绝对值是体积元dxdydz的系数。
代数的观点: 行列式无非是方阵的一个函数,但它是一种反对称多重线性型,比如,,多重线性性体现在每一行或每一列的线性性质,反对称体现在两行或两列交换后变负。同为行和列的反对称多重线性型,行列式的计算方式也就确定了。
这两种观点都不允许非方阵的行列式的定义。
===============================================================
补充一下,问一个数学工具的本质,窃以为并不妥当,有一点追求终极真理的感觉,在哲学上并不能自洽。不如先看一下它的历史,然后再观察一下它有哪些深刻的应用。
历史上,行列式先于矩阵,用于求解线性方程。行列式是否为零可用来判定一个线性方程是否有解,然后Cramer规则直接用行列式给出线性方程的解。随后,行列式才被视为一个矩阵的函数。
数学上的两条重要的主线:解方程和微积分在线性代数上统一起来了,因为微分实际上就是一种线性逼近。因而,矩阵和行列式在这其中起到的作用就非常深刻了。而行列式作为一个函数具有的反对称线性性在抽象代数是一个非常重要的概念。
所以说,行列式只不过是数学家在解决实际问题时发明的一个很好用的工具,恰好它又可以在许多的应用中发挥作用。
================================================================
再补充一下,几个常用的行列式应用
- 积分变换与Jacob行列式 (体积元都为正,所以取行列式的绝对值)
- Cramer规则
的解为,其中为将的第列换成 - 平行四边形面积,从原点出发的两个矢量构成的平行四边形的有向面积为
- 平行六面体体积
- 叉乘的另一种定义
- 判断共面
- 判断共圆
更新内容链接: 行列式:作业部落 Cmd Markdown 编辑阅读器(截图内容)
嗯,偶要开始认真答题啦~
-------------------我----------是---------分------------割-----------线----------------------
先来说结论,数域上的阶行列式,其等价定义是
定义在上,满足如下条件的数量函数:
- 列线性性
- 列反对称性
- 规范性
-----------------------------等----价----定----义----证----明-------------------------------
符号说明:
- 为第个分量为,其余分量为的列向量。
- 分别对应矩阵第1列,第2列,,第n列的列向量。
- 矩阵
定义上的数量函数我们断言,这样的数量函数存在且唯一,而行列式满足上诉性质,所以有我们开头所说的等价定义。
满足如下条件
- 列线性性:
- 列反对称性:
- 规范性:
- 存在性:
- 唯一性:
- 若,则存在,有,根据列线性性和列反对称性,有同理,有,所以
- 若,则矩阵可经过一系列的初等列变换,变为单位矩阵,即存在初等矩阵,有。因为,每一次初等列变换,都在等式两边乘以相同的倍数,所以我们有。
--------------------------从函数空间角度理解等价定义-------------------------------
上面的证明的缺陷是只证明了其唯一性,并没有给出其表达式。
下面我们通过研究满足特殊性质的函数空间,给出构造性的证明方法
定义函数空间(咦,知乎不支持中文公式混排,啊我还是换Markdown吧@_@)
------------------------------------------行列式的性质------------------------------------------------
于是我们得到了行列式的一个等价定义,而我们所说的「有向体积」刚好满足上述几条性质,所以我们也可以理解为行列式是其列向量所围成的有向体积。当然还可以通过该等价定义得到一些其他性质,有时间更新~
诚如很多评论指出的,我写这篇答案仅仅只是为了反驳最高票答案的蛇足,并没有给出自己的答案。事实上,就线性代数中的行列式而言,最高票的答案除去画蛇添足的那部分是一个很精彩的解释,我也做不到更好,就不献丑了。
鉴于知乎上还是有很多专家在,我们可以把眼光放得稍稍高一些。我个人认为从范畴论中行列式函子的角度考虑问题似乎能够更加接近行列式的本质。感兴趣的朋友可以参考
http://personal.us.es/fmuro/pontevedra.pdf
和其中列出的参考文献 @chuo Chan 。事实上本文中这个古怪定义从函子的角度看是自然的。
--------------------------------------------------------------------------------------------------------
三千多票的同学还是不要误导大家了 @童哲 前面线性放大率那里写的还不错,在给黎曼流形赋测度时就是用行列式来调节不同坐标卡上测度的转换率的。可后面傅里叶变换的行列式那里是什么鬼?
先不纠结手性那里你玩的是实空间还是复空间,就算全按照你的逻辑,也应该等于而不是 ,除非你将定义成才有可能相等吧。
再退一步,假设你有方法合理定义, 可你那两个式子放在一起也应该是, , 你没有任何理由把负值舍掉吧。
当然,常数问题可以通过归一化绕过去,改改傅里叶变换的定义就好,可为什么你只取了正一而不是负一。事实上,傅里叶变换的所有特征值都是可以求出来的,
, 甚至每一个特征函数都可以具体的写出来,维基上都有。可是等于多少呢?恐怕都比 1 要合理吧。
还有后面微分算子行列式那部分,我想说都不知道从何说起,只能说你胆子太大了,不懂的东西也说的像专家一样。当然每个微分算子都有零特征值,但不等于找微分算子的行列式是在耍流氓。
实际上研究微分算子的行列式是一件很有意义的事情,本人才疏学浅,不敢用本质这个词,但把微分算子的所有非零特征值乘起来(称为微分算子的行列式)能够揭示底空间拓扑信息这一点还是挺奇妙的。举个例子,实轴是非紧的,函数空间完备化很复杂,我们可以先考虑最简单的,实轴的一点紧化,单位圆 ,考虑求导运算 (这里前面加虚数单位系数是使得特征值都在实轴上,省掉考虑的麻烦)。根据傅里叶分解,每个单位圆上的复函数可以写成, .
所以所有非零特征值为
这里又遇到了无穷个-1乘起来等于多少的问题。为了绕开它,我们计算(叫做Laplace算子)作用在实函数空间上的行列式。此时的所有特征值为
乘起来,. 连乘积的计算要用到黎曼函数的延拓:
所以 这是最简单的可以求的微分算子的行列式。在量子场论中算自由粒子的高斯路径积分时就会用到。
更一般地,考虑 n 维紧无边黎曼流形及其上的酉平坦向量丛(存在保度量联络使得曲率为零)使得上同调群 (前面例子满足这些性质)。设定义在整个微分形式空间上的Laplace算子为 , 定义在p次微分形式空间上的Laplace算子为 ,我们将的所有非零特征值乘起来得到, 我们定义
. 显然这个定义是依赖流形与丛上的度量的。但是神奇的是
当n为奇数时,是一个拓扑不变量,即它不依赖流形与丛上的度量的选取。(Reidemeister-Franz, Ray-Singer, Cheeger-Mueller)
这是历史上第一个能够区别同伦等价但不同胚流形的拓扑不变量。
如果不从线性变换来看,单纯从行列式本身来看,二阶行列式便是一个有向平行四边形的面积,三阶行列式便是一个有向平行六面体的体积。
其实,线性代数就是n维空间的解析几何,解析几何就是三维空间的线性代数。(李尚志经典思想,我拿过来引用。)
我引用的都是别人的思想和成型的理论,可以说没有多少自己的独特的思想,竟然还有这么多朋友赞,谢谢大家。
- 。换而言之,行列式实际可由迹定义。李群中的行列式,对应李代数中的迹。
- 行列式和迹,都属于矩阵的阿贝尔不变量(abelian invariants),即满足 的 f。
- 它们也都是矩阵的特征值在对称多项式下的值。一个是所有特征值乘起来,一个是所有特征值加起来 。
- 行列式和迹都是矩阵的特征多项式中的系数,一个是最低系数,一个是最高系数(特征多项式的其它系数,无疑也是在对称多项式下的值)。
- 很典型的例子是示性类。某种意义上陈类(Chern class)是行列式和迹的一种推广。最高陈类就是行列式。第一陈类就是迹。中间的陈类也都是阿贝尔不变量。
- 以上的几点之间有紧密的关系,有兴趣可自己想想。
由于某种神秘原因,大家学线性代数的时候一般都会忽略迹(可能是因为太好算了,把矩阵的对角线元素加起来就行了,老师出不了题目)。
其实迹在某种意义上更"本质"。因为如果说行列式对应着"体积",那么迹对应着"维数"。在数学(表示论等等)和物理(量子场论等等)中,我们都会发现迹无处不在。尤其是无限维矩阵的迹。
1,行列式是针对一个的矩阵而言的。表示一个维空间到维空间的线性变换。那么什么是线性变换呢?无非是一个压缩或拉伸啊。假想原来空间中有一个维的立方体(随便什么形状),其中立方体内的每一个点都经过这个线性变换,变成维空间中的一个新立方体。
2,原来立方体有一个体积,新的立方体也有一个体积。
3,行列式是一个数对不对?这个数其实就是 ,结束了。
就这么简单?没错,就这么简单。
所以说:行列式的本质就是一句话:
行列式就是线性变换的放大率!
理解了行列式的物理意义,很多性质你根本就瞬间理解到忘不了!!!比如这个重要的行列式乘法性质:
道理很简单,因为放大率是相乘的啊~!
你先进行一个变换,再进行一个变换,放大两次的放大率,就是式子左边。
你把“先进行变换,再进行变换”定义作一个新的变换,叫做“”,新变换的放大律就是式子右边。
然后你要问等式两边是否一定相等,我可以明确告诉你:too simple 必须相等。因为其实只是简单的把事实陈述出来了。这就好像:
“ 你经过股票投资,把1块钱放大3被变成了3块钱,然后经过实业投资,把3块钱中的每一块钱放大5倍成了5块钱。请问你总共的投资放大率是多少?”
翻译成线性代数的表达就是:
这还不够!我来解锁新的体验哈~
上回咱们说到行列式其实就是线性变换的放大率,所以你理解了:
那么很自然,你很轻松就理解了:
so easy,因为
同时你也必须很快能理解了
“矩阵可逆” 完全等价于 “”
因为再自然不过了啊,试想是什么意思呢?不就是线性变换把之前说的维立方体给拍扁了啊?!这就是《三体》中的”降维打击”有木有!!!如来神掌有木有!!!直接把3维立方体 piaji一声~一掌拍成2维的纸片,纸片体积多少呢?当然是 0 啦!
请注意我们这里说的体积都是针对维空间而言的, 就表示新的立方体在 维空间体积为0,但是可能在维还是有体积的,只是在 维空间的标准下为0而已。好比一张纸片,“2维体积”也就是面积可以不为0,但是“3维体积”是妥妥的0。
所以凡是的矩阵都是耍流氓,因为这样的变换以后就再也回不去了,降维打击是致命性的。这样的矩阵必然是没有逆矩阵 的。这就是物理意义和图象思维对理解数学概念的重要性。
当然要证明也是小菜一碟轻而易举的:
由
可知
这怎么可能啊~? 了,那么等于多少呢?毫无办法,只能不存在。一个矩阵怎么可能行列式不存在呢?只能是因为 不存在。所以自然不可逆。
YES!竟然真的过1000了,我来加点儿烧脑的,第一次看以下结论如果没有毁三观亮瞎双眼的刺激感,请接受阿哲的膝盖:
傅里叶变换也可以求行列式!!!
是的你没有听错,大名鼎鼎的傅里叶变换 居然也可以求行列式!!!
首先一定有很多人要问责我,是不是没有学过行列式,因为按照绝大多数教科书来说,行列式是这样定义的:
然后还有什么好说的,拿到一个矩阵各种化简然后算就好了呗,可是怎么说傅里叶变换也可以求行列式?傅里叶变换又不是一个矩阵,更别说矩阵元了。我在痴人说梦吗?
但是,等等!桥度麻袋,“傅里叶变换”里面有个"变换",难道它也是“线性变换”?!!!
一检查,尼玛还真的是。所有函数就组成了一个向量空间,或者说线性空间。可是为什么呢?从高中咱们就熟悉的明明是函数啊,怎么就变成了向量呢?向量不是一个维空间中的箭头吗?长得也不像啊。
其实 “所有组成的集合” 确实满足一切线性空间的定义,比如:
1,向量和向量可以相加,并且有交换律
2,存在零向量 ,即处处值为零的函数
3,任何一个向量都存在一个与之对应的逆向量,使得相加之和等于零向量
以及存在数乘以及分配率等性质…… 总之“所有向量组成的集合”完美满足线性空间的8条黄金法则。
艾玛真是亮瞎了俺的钛合金左眼,原来咱们熟悉的函数身世可不一般啊,其实它是一个掩藏得很好的向量!!!对,我没有说错,因为所有函数组成的集合构成了一个线性空间!而且还是无穷维的线性空间!!!阿哲校长感动得哭了 T____T
好,下面准备亮瞎钛合金右眼吧~
一旦接受了向量是向量的设定,周围的一切都变得有趣起来了!轶可赛艇!!!
接下来不妨思考一下,傅里叶变换 是把一个函数变成了另一个函数,难道不可以理解为把一个线性空间中的向量变成了另一个线性空间中的向量吗? 我整个人都咆哮了!!!
而且这个变换是妥妥的线性的,完美地满足线性变换的定义:
以及
因为积分变换的线性性:
的傅里叶变换的傅里叶变换+的傅里叶变换
加法达成。当然数乘也轻松满足:
于是乎,我们通过以上内容知道了一个重要的结论:
傅里叶变换其实也是线性变换,所以也可以求行列式!!!
(其实傅里叶变换作为一个线性变换不但可以求行列式,更可以求它的特征向量!!比如,以及其他很多很多牛逼的东东,恭喜你又一扇新世界的大门被打开了。千万不要小看傅里叶变换,比如量子力学不确定性原理的秘密就都在这里了)
言归正传那么傅里叶变换神秘的行列式的值 究竟是多少呢?难道这个无穷维线性变换也可以求出行列式吗?
那阿哲就把 求出来给你看:
很明显的问题是这是一个比较困难的问题,如果不太困难的话评论中应该有人po出了答案。因为求傅里叶变换的行列式让我们觉得没有工具可以用,行列式的定义式毫无用武之地。毕竟没有谁能够写出傅里叶变换的矩阵表达式并套用公式。
所以一定要用到其他的化简办法,例如对称性啊等等。不妨先回顾一下之前的结论,对于任何可逆线性变换有如下性质:
如果把傅里叶变换看做是一个无穷维的,那么也一定满足这个性质。所以只要求出了傅里叶变换的逆变换的行列式,求一个倒数就得到了傅里叶变换的行列式。
艾玛~ 问题变得更难了。傅里叶变换的逆变换?还好我学过。。。
若傅里叶变换是:
则它的逆变换是: (说明傅里叶变换可逆,因为表达式都出来了)
现在的问题是,正负变换,我都不会求行列式,唯一知道的是 为之奈何?我们还需要至少一个表达式能够反映二者的关系,连立起来才能够求解。
没问题,因为这两个变换真是太像了,像到几乎完全对称。差异点仅仅在于逆变换多一个乘积系数,以及积分因子多了一个负号。除此之外完全是同一个线性变换。而积分因子多一个负号是什么意思?意味着复数空间的手性定义相反,变成了,左手变成右手,或者说虚数部分取负号实数部分不变。这样的手性改变,并不会改变线性变换的体积放大率(之前的知识)。于是乎在线性变化的方法率的意义下,傅里叶变换和它的逆变换放大率是一样的(还差一个乘积系数)。
于是也就是说
结合之前的式子
我们很容以得到
(更严格来说更对称的傅里叶变换版本的行列式为1)
我去,真的可以求啊。是的,你已经求出来了,虽然神一般的无穷维行列式的计算公式并没有出现,但你确实求出来了。而且阿哲再附送大家一个彩蛋:
都说求导可以把一个函数变成另一个函数,如果我们把“求导这个操作”当做是一个线性变换,发现其实也是完全合理的:
线性性完美地满足:
那么请问"求导作为函数空间下的线性变换行列式”等于多少呢?
思考一下。。。
再思考一下。。。前方剧透请小心手滑!!!
。。。
因为,它是不可逆的!
你要问我兹次不兹次?我可以明确告诉你,不可逆的线性变换都是耍流氓,行列式都等于零。不要没事就搞个大新闻。
(全剧终,其他文章连载继续。时间太少更新不够勤,请多包涵。另外数学中的严格性在本文中并不能体现,也请海涵。)