机器学习基石的泛化理论及VC维部分整理

 

 第四讲 机器学习的可行性

 

一、Hoeffding's Inequality

\(P[\left | \nu -\mu  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)              (1)

in-sample error, 也就是在样本里出现的error,\(E_{in}\) is probably close to out-of-sample error \(E_{out}\) (within \(\epsilon\))

推出一个类似的公式: \(P[\left | E_{in} - E_{out}  \right |>\epsilon ] \leq 2exp(-2\epsilon^{2}N)\)    (2)

 

也就是说,公式(2)说明了问题可以学习的两个条件:

(1)\( E_{in} \approx E_{out}\) :这个代表 \( E_{out}\) 要和 \( E_{in}\)差不多大

(2)\( E_{in}(h) \approx 0\) :这个代表\( E_{in}\)要差不多是0

这就推出,\( h \approx f\)  with respect to \(P\)

 

我们的学习思路就是,从一些hypothesis set 中找到最好的 \(h\),使得\( h \approx f\) 

二、真实的学习

面对多个\( h \) 时,容易出现问题。

BAD Sample:\( E_{in} and E_{out} \) far away

那么,Bad Sample的概率有多大呢?我们认为,在众多的hypothesis set上的每一个\(h_{i}\),只要有一个是坏的,则都是坏的

\(P_{\mathfrak{D}}\left [ BAD   \mathfrak{D} \right ]  \)

\( = P_{\mathfrak{D}}\left [ BAD  \mathfrak{D}  for   h_{1} or  BAD   \mathfrak{D}  for  h_{2}  or ...  or  BAD  \mathfrak{D}  for  h_{M} \right ] \) 

\( \leq P_{D} \left [ BAD  D for  h_{1} \right ] + P_{D} \left [ BAD  D for h_{2} \right] + ... +  P_{D} \left [ BAD  D for h_{M} \right] \)

(\( Union Bound \))

\( \leq 2exp(-2\epsilon^2N) + 2exp(-2\epsilon^2N) + ... + 2exp(-2\epsilon^2N) \)

\( = 2M\cdot exp(-2\epsilon^2N)\)

 

当hypothesis set为有限时,(\( M\) 固定),当\(N\)足够大时,因为后面的\(exp(-2\epsilon^2N)\) 随着\(N\)增大会变得特别小,故总体值是很小的。

此时学习是有效的。

 

当hypothesis set 为无穷大时,\( M = \infty \)  则有问题了,具体问题下一部分讨论。

posted @ 2014-02-10 15:42  mfwzan  阅读(419)  评论(0编辑  收藏  举报