注:ifeve.com的同名文章为本人所发,此文在其基础做了些调整。转载请注明出处! 


 

一、java8中CAS的增强

    前些天,我偶然地将之前写的用来测试AtomicInteger和synchronized的自增性能的代码跑了一下,意外地发现AtomicInteger的性能比synchronized更好了,经过一番原因查找,有了如下发现:

在jdk1.7中,AtomicInteger的getAndIncrement是这样的:

public final int getAndIncrement() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return current;
    }
}
public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

    而在jdk1.8中,是这样的:

public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}

    可以看出,在jdk1.8中,直接使用了Unsafe的getAndAddInt方法,而在jdk1.7的Unsafe中,没有此方法。基本可以断定,Unsafe新增的方法是性能提升的关键。(文章末尾将附上一些探索的过程及推论)

    通过查看AtomicInteger的源码可以发现,受影响的还有getAndAdd、addAndGet等大部分方法。

    结论:有了这次对CAS的增强,我们又多了一个使用非阻塞算法的理由。


 

二、测试方法

    以下给出测试代码,供参考与测试。需要注意的是,此测试方法简单粗暴,compareAndSet的性能不如synchronized,并不能简单地说synchronized就更好,两者的使用方式是存在差异的,而且在实际使用中,还有业务处理,不可能有如此高的竞争强度,此对比仅作为一个参考,该测试能够证明的是,AtomicInteger.getAndIncrement的性能有了大幅提升。

package performance;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.LockSupport;

/**
  * @author trytocatch@163.com
  */
public class AtomicTest {
    //测试规模,调用一次getAndIncreaseX视作提供一次业务服务,记录提供TEST_SIZE次服务的耗时
    private static final int TEST_SIZE = 100000000;
    //客户线程数
    private static final int THREAD_COUNT = 10;
    //使用CountDownLatch让各线程同时开始
    private CountDownLatch cdl = new CountDownLatch(THREAD_COUNT + 1);

    private int n = 0;
    private AtomicInteger ai = new AtomicInteger(0);
    private long startTime;

    public void init() {
        startTime = System.nanoTime();
    }

    /**
     * 使用AtomicInteger.getAndIncrement,测试结果为1.8比1.7有明显性能提升
     * @return
     */
    private final int getAndIncreaseA() {
        int result = ai.getAndIncrement();
        if (result == TEST_SIZE) {
            System.out.println(System.nanoTime() - startTime);
            System.exit(0);
        }
        return result;
    }

    /**
     * 使用synchronized来完成同步,测试结果为1.7和1.8几乎无性能差别
     * @return
     */
    private final int getAndIncreaseB() {
        int result;
        synchronized (this) {
            result = n++;
        }
        if (result == TEST_SIZE) {
            System.out.println(System.nanoTime() - startTime);
            System.exit(0);
        }
        return result;
    }

    /**
     * 使用AtomicInteger.compareAndSet在java代码层面做失败重试(与1.7的AtomicInteger.getAndIncrement的实现类似),
     * 测试结果为1.7和1.8几乎无性能差别
     * @return
     */
    private final int getAndIncreaseC() {
        int result;
        do {
            result = ai.get();
        } while (!ai.compareAndSet(result, result + 1));
        if (result == TEST_SIZE) {
            System.out.println(System.nanoTime() - startTime);
            System.exit(0);
        }
        return result;
    }

    public class MyTask implements Runnable {
        @Override
        public void run() {
            cdl.countDown();
            try {
                cdl.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            while (true)
                getAndIncreaseA();// getAndIncreaseB();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        AtomicTest at = new AtomicTest();
        for (int n = 0; n < THREAD_COUNT; n++)
            new Thread(at.new MyTask()).start();
        System.out.println("start");
        at.init();
        at.cdl.countDown();
    }
}

    以下是在Intel(R) Core(TM) i7-4710HQ CPU @2.50GHz(四核八线程)下的测试结果(波动较小,所以每项只测试了四五次,取其中一个较中间的值):

jdk1.7
AtomicInteger.getAndIncrement 12,653,757,034
synchronized 4,146,813,462
AtomicInteger.compareAndSet 12,952,821,234

jdk1.8
AtomicInteger.getAndIncrement 2,159,486,620
synchronized 4,067,309,911
AtomicInteger.compareAndSet 12,893,188,541 

 

 

 

三、提升原因的探索及推论

    一开始,我怀疑在1.8中,Unsafe直接使用了native方法,而1.7是在getAndIncrement里完成的失败重试,也就是在java代码层面,所以造成了性能的差别,于是我用jad反编译了Unsafe,得到了如下代码:

public final int getAndAddInt(Object obj, long l, int i)
{
    int j;
    do
        j = getIntVolatile(obj, l);
    while(!compareAndSwapInt(obj, l, j, j + i));
    return j;
}
public native int getIntVolatile(Object obj, long l);
public final native boolean compareAndSwapInt(Object obj, long l, int i, int j);

并且参考了openjdk8的Unsafe源码:

public final int getAndAddInt(Object o, long offset, int delta) {
    int v;
    do {
        v = getIntVolatile(o, offset);
    } while (!compareAndSwapInt(o, offset, v, v + delta));
    return v;
}
public native int     getIntVolatile(Object o, long offset);
public final native boolean compareAndSwapInt(Object o, long offset,
                                              int expected,
                                              int x);

由上面的信息可以看出,1.8中,失败重试也是在java代码层面进行的(区别是转移到了Unsafe的java方法里面),算是推翻了我的猜测,于是我决定通过反射,直接获取到Unsafe实例,编写跟Unsafe.getAndAddInt方法一样的代码来测试,看能否找到一些新的线索:

...
import sun.misc.Unsafe;
public class AtomicTest {
    ....
    private Unsafe unsafe;
    private long valueOffset;
    public AtomicTest(){
        Field f;
        try {
            f = Unsafe.class.getDeclaredField("theUnsafe");
            f.setAccessible(true);
            unsafe = (Unsafe)f.get(null);
            valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
        }catch(NoSuchFieldException e){
        ...
        }
    }
    private final int getAndIncreaseD(){
        int result;
        do{
            result = unsafe.getIntVolatile(ai, valueOffset);
        }while(!unsafe.compareAndSwapInt(ai, valueOffset, result, result+1));
        if(result == MAX){
            System.out.println(System.nanoTime()-startTime);
            System.exit(0);
        }
        return result;
    }
    ...
}

但让人失望的是,该方式跟1.7的getAndIncrement效率一样,明明跟1.8的Unsafe.getAndAddInt方法一样,却是截然不同的效率。

最后,经过ifeve.com的网友们的指点,对性能的提升原因有了如下推论,虽不敢说百分之百正确(因为没有用jvm的源码作为论据),但还是有很大把握的,感谢网友@周 可人和@liuxinglanyue!

Unsafe是经过特殊处理的,不能理解成常规的java代码,区别在于:

  • 1.8在调用getAndAddInt的时候,如果系统底层支持fetch-and-add,那么它执行的就是native方法,使用的是fetch-and-add;
  • 如果不支持,就按照上面的所看到的getAndAddInt方法体那样,以java代码的方式去执行,使用的是compare-and-swap;

这也正好跟openjdk8中Unsafe::getAndAddInt上方的注释相吻合:

  • // The following contain CAS-based Java implementations used on
    // platforms not supporting native instructions

相关链接:
http://ashkrit.blogspot.com/2014/02/atomicinteger-java-7-vs-java-8.html
http://hg.openjdk.java.net/jdk8u/hs-dev/jdk/file/a006fa0a9e8f/src/share/classes/sun/misc/Unsafe.java

posted on 2015-05-24 20:43  trytocatch  阅读(4542)  评论(1编辑  收藏  举报