ZooKeeper - CAP理论

CAP是分布式系统的重要理论,在大型分布式系统中一致性(Consistency),高可用性(High-Availability),分区可容忍性(Partition-tolerance)是设计者都希望能同时达到的,但是根据CAP理论一个系统最多能实现3中其2。

CAP理解:

C:Consistency, all nodes see the same data at the same time;
A:Availability, reads and writes always succeed;
P:Partition tolerance, the system continue to operate despite arbitray message loss or failure of part of the the system。

在分布式系统的设计中,没有一种设计可以同时满足一致性,可用性,分区容错性 3个特性。

举个例子:

我们来看一个简单的问题, 一个DB服务   搭建在两个机房(北京,广州),两个DB实例同时提供写入和读取

  1. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功
      在没有出现网络故障的时候,满足CA原则,C 即我的任何一个写入,更新操作成功并返回客户端完成后,分布式的所有节点在同一时间的数据完全一致, A 即我的读写操作都能够成功,但是当出现网络故障时,我不能同时保证CA,即P条件无法满足


  2. 假设DB的更新操作是只写本地机房成功就返回,通过binlog/oplog回放方式同步至侧边机房
      这种操作保证了在出现网络故障时,双边机房都是可以提供服务的,且读写操作都能成功,意味着他满足了AP ,但是它不满足C,因为更新操作返回成功后,双边机房的DB看到的数据会存在短暂不一致,且在网络故障时,不一致的时间差会很大(仅能保证最终一致性)


  3. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功且网络故障时提供降级服务
      降级服务,如停止写入,只提供读取功能,这样能保证数据是一致的,且网络故障时能提供服务,满足CP原则,但是他无法满足可用性原则。

转自:https://blog.csdn.net/jasonsungblog/article/details/49017955

posted on 2018-08-23 17:48  TrustNature  阅读(6)  评论(0编辑  收藏  举报