226. 翻转二叉树
1.题目介绍
给你一棵二叉树的根节点 \(root\) ,翻转这棵二叉树,并返回其根节点。
示例 1:
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3]
输出:[2,3,1]
示例 3:
输入:root = []
输出:[]
提示:
- 树中节点数目范围在 \([0, 100]\) 内
- \(-100 <= Node.val <= 100\)
2.题解
2.1 深度优先搜索(递归)
思路
使用深度优先搜索,只要子节点都翻转完毕,在翻转当前层的根节点与其兄弟节点即可。
代码
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == nullptr) return nullptr;
TreeNode* left = invertTree(root->left);
TreeNode* right = invertTree(root->right);
root->left = right;
root->right = left;
return root;
}
};
2.2 BFS 广度优先搜索
思路
使用队列存储当前层数所有节点,利用队列先进先出的特性实现:BFS广度优先搜索
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if(root == nullptr) return nullptr;
queue<TreeNode*> q;
q.push(root);
while(!q.empty()){
TreeNode* curr = q.front();
q.pop();
TreeNode* temp = curr->right;
curr->right = curr->left;
curr->left = temp;
if(curr->left != nullptr) q.push(curr->left);
if(curr->right != nullptr) q.push(curr->right);
}
return root;
}
};
2.3 DFS广度优先搜索(用栈消除递归)
思路
使用栈消除递归,利用栈先进后出的特性实现:深度优先搜素DFS
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if(!root) return nullptr;
stack<TreeNode*> stk;
stk.push(root);
while(!stk.empty()){
TreeNode* curr = stk.top();
stk.pop();
TreeNode* temp = curr->right;
curr->right = curr->left;
curr->left = temp;
if(curr->right != nullptr) stk.push(curr->right);
if(curr->left != nullptr) stk.push(curr->left);
}
return root;
}
};