随笔分类 - 大数据
摘要:Hbase最核心但也是最难理解的就是数据模型,由于与传统的关系型数据库不同,虽然Hbase也有表(Table),也有行(Row)和列(Column),但是与关系型数据库不同的是Hbase有一个列族(Column Family)的概念,它将一列或者多列组织在一起,HBase必须属于某一个列族。 行和列
阅读全文
摘要:本文讲述如何安装,部署,启停HBase集群,如何通过命令行对Hbase进行基本操作。 并介绍Hbase的配置文件。 在安装前需要将所有先决条件安装完成。 一、先决条件 1、JDK 和Hadoop一样,Hbase需要JDK1.6或者更高的版本,所以请安装好JDK并配置环境变量。 Hbase版本与JDK
阅读全文
摘要:本文将介绍大数据的知识和Hbase的基本概念,作为大数据体系中重要的一员,Hbase弥补了Hadoop只能离线批处理的不足,支持存储小文件,随机检索。而这种特性使得Hbase对于实时计算体系的事件存储有天然的较好的支持。这使得Hbase在实时流式计算中也扮演者重要的角色。 1、大数据与Hbase 大
阅读全文
摘要:本文基于Flink1.9版本简述如何连接Kafka。 流式连接器 我们知道可以自己来开发Source 和 Sink ,但是一些比较基本的 Source 和 Sink 已经内置在 Flink 里。 预定义的source支持从文件、目录、socket,以及 collections 和 iterators
阅读全文
摘要:本文基于java构建Flink1.9版本入门程序,需要Maven 3.0.4 和 Java 8 以上版本。需要安装Netcat进行简单调试。 这里简述安装过程,并使用IDEA进行开发一个简单流处理程序,本地调试或者提交到Flink上运行,Maven与JDK安装这里不做说明。 一、Flink简介 Fl
阅读全文
摘要:1、UnknownTopicOrPartitionException org.apache.kafka.common.errors.UnknownTopicOrPartitionException: This server does not host this topic-partition 报错内
阅读全文
摘要:1、集群管理 前台启动broker bin/kafka-server-start.sh <path>/server.properties Ctrl + C 关闭 后台启动broker bin/kafka-server-start.sh -daemon <path>/server.properties
阅读全文
摘要:1.背景 Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架。其中 Apache Storm(以下简称“Storm”)在美团点评实时计算业务中已有较为成熟的运用(可参考 Storm 的 可靠性保证测试),有管理平台、常用 API 和相应的文档,大量实时
阅读全文
摘要:本文简述通过maven和gradle快速构建的Flink工程。建议安装好Flink以后构建自己的Flink项目,安装与示例运行请查看:Flink快速入门--安装与示例运行. 在安装好Flink以后,只要快速构建Flink工程,并完成相关代码开发,就可以轻松入手Flink。 构建工具 Flink项目可
阅读全文
摘要:1、了解 Apache Kafka 1.1、简介 官网:http://kafka.apache.org/ Apache Kafka 是一个开源消息系统,由Scala 写成。是由Apache 软件基金会开发的一个开源消息系统项目。 Kafka 最初是由LinkedIn 开发,并于2011 年初开源。2
阅读全文
摘要:实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等。这些都是处理有限数据流的经典方式。而Flink专注的是无限流处理,那么他是怎么做到批处理的呢? 无限流处理:输入数据没有尽头;数据处理从当前或者过去的某一个时间 点开始,持续不停地进
阅读全文
摘要:Yahoo 的 Storm 团队曾发表了一篇博客文章 ,并在其中展示了 Storm、Flink 和 Spark Streaming 的性能测试结果。该测试对于业界而言极 具价值,因为它是流处理领域的第一个基于真实应用程序的基准测试。 该应用程序从 Kafka 消费广告曝光消息,从 Redis 查找每
阅读全文
摘要:Kafka在0.10.0.0版本以前的定位是分布式,分区化的,带备份机制的日志提交服务。而kafka在这之前也没有提供数据处理的顾服务。大家的流处理计算主要是还是依赖于Storm,Spark Streaming,Flink等流式处理框架。 Storm,Spark Streaming,Flink流处理
阅读全文
摘要:流式计算分为无状态和有状态两种情况。无状态计算观察每个独立的事件,Storm就是无状态的计算框架,每一条消息来了以后和前后都没有关系,一条是一条。比如我们接收电力系统传感器的数据,当电压超过240v就报警,这就是无状态的数据。但是如果我们需要同时判断多个电压,比如三相电路,我们判断三相电都高于某个值
阅读全文
摘要:Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成。 在Streaming-大数据的未来一文中我们知道,对于流式处理最重要的两件事,正确性,时间推理工具。而Flink对两者都有非常好的支持。 Flink对于正确性的保证 对
阅读全文
摘要:我们知道过去对于Kafka的定义是分布式,分区化的,带备份机制的日志提交服务。也就是一个分布式的消息队列,这也是他最常见的用法。但是Kafka不止于此,打开最新的官网。 我们看到Kafka最新的定义是:Apache Kafka® is a distributed streaming platform
阅读全文
摘要: 数据架构设计领域正在发生一场变革,其影响的不仅是实时处理业务,这场变革可能将基于流的处理视为整个架构设计的核心,而不是将流处理只是作为某一个实时计算的项目使用。本文将对比传统数据架构与流处理架构的区别,并将介绍如何将流处理架构应用于微服务及整体系统中。 传统数据架构 传统数据架构是一种中心化
阅读全文
摘要:flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性、高吞吐、低延迟等优势,本文简述flink在windows和linux中安装步骤,和示例程序的运行。 首先要想运行Flink,我们需要下载并解压Flink的二进制包,下载地址如下:https://flink.apache.
阅读全文
摘要: Kafka是由LinkIn开源的实时数据处理框架,目前已经更新到2.3版本。不同于一般的消息中间件,Kafka通过数据持久化和磁盘读写获得了极高的吞吐量,并可以不依赖Storm,SparkStreaming的流处理平台,自己进行实时的流处理。 Kakfa的Offset机制是其最核心机制之一,
阅读全文
摘要:我们都知道Kafka的吞吐量很大,但是Kafka究竟会不会丢失消息呢?又会不会重复消费消息呢? 有很多公司因为业务要求必须保证消息不丢失、不重复的到达,比如无人机实时监控系统,当无人机闯入机场区域,我们必须立刻报警,不允许消息丢失。而无人机离开禁飞区域后我们需要将及时报警解除。如果消息重复了呢,
阅读全文