金融量化学习---Python, MySQL, Pandas

这里用来记录一些在金融领域,尤其是银行相关的资金、债券、票据中应用到的数据管理与分析, 编程等心得或笔记,以及个人的一点小小兴趣(易经八卦、藏密禅修)等

导航

一个金融软件的基础功能分布

Popular Modules
Financial Data Structures
Standard: Tick, Volume, Dollar bars. Information-Driven Bars: Imbalance and Run Bars (Tick, Volume, Dollar).

Labelling Techniques
Triple-Barrier, Meta-Labeling, Trend Scanning, Tail-Sets, Matrix Flags, Excess Over Mean/Median, Return Vs. Benchmark.

Feature Engineering
Fractionally Differentiated, Structural Breaks (CUSUM, Explosiveness Tests), Market-Microstructural.

Machine Learning
Sampling, Sequentially Bootstrapped Ensembles, Feature Importance (MDI, MDA, Model Fingerprint), Cross-Validation(Purged, Embargo), Bet Sizing (EF3M).

Portfolio Optimization
Mean-Variance, Black-Litterman, Hierarchical Risk Parity, Hierarchical Equal Risk Contribution, Nested Clustered Optimization.

Risk Estimators
Min Cov Determinant, MLE Covariance Estimator, Shrinkage, De-noising and De-toning, Hierarchical Cluster Filtering, Theory Implied Correlation.

Online Portfolio Selection
Benchmarks, Momentum, Mean Reversion (PAMR, OLMAR), Pattern Matching (CORN, SCORN, FCORN, FCORN-K), Universal Portfolios.

Codependence and Networks
Codependence, Distance Metrics, Hierarchies, Clustering, Minimum Spanning Trees, Optimal Transport, Planar Maximally Filtered Graphs.

Synthetic Data Generation
Related to Correlation Matrices: CorrGAN, Vines (R, C, D, Partial Correlation), Extended Onion Method, Hierarchical Correlation Block Model.

posted on 2020-11-13 17:43  chengjon  阅读(167)  评论(0编辑  收藏  举报