pandas行筛选/列筛选(条件筛选/范围筛选)/计算
筛选行
一、过滤机制 dataframe[ 条件 ]
可以按照下列方法,依据列的值过滤DataFrame处理某些符合条件的行
dataframe[ dataframe["colname"] > value ]
dataframe[ dataframe["colname"] < value ]
dataframe[ dataframe["colname"] != value ]
二、推导过程
boolean_array = dataframe["colname"] > value ————> Series type with bool values
dataframe[boolean_array] —————> DataFrame filtered
dataframe[ dataframe["colname"] > value ] —————> DataFrame filtered
三、多条件过滤
dataframe[ dataframe["col1"] > val1 & dataframe["col2"] != val2]
四、举例
1、从记录中选出所有fault_code列的值在fault_list= [487, 479, 500, 505]这个范围内的记录
record2=record[record['FAULT_CODE'].isin(fault_list)]
要用.isin 而不能用in,用 in以后选出来的值都是True 和False,然后报错:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any()
2、选出所有WTGS_CODE=20004013的记录
set=20004013
record= record[record['WTGS_CODE'] == set]
要点:
(1)多个条件筛选的时候每个条件都必须加括号。
(2)判断值是否在某一个范围内进行筛选的时候需要使用DataFrame.isin()的isin()函数,而不能使用in。
3、using DataFrame.apply, which applies a function along a given axis,
df = pandas.DataFrame(np.random.randn(5, 3), columns=['a', 'b', 'c'])
df:
a b c
0 -0.001968 -1.877945 -1.515674
1 -0.540628 0.793913 -0.983315
2 -1.313574 1.946410 0.826350
3 0.015763 -0.267860 -2.228350
4 0.563111 1.195459 0.343168
df[df.apply(lambda x: x['b'] > x['c'], axis=1)]
Out:
a b c
1 -0.540628 0.793913 -0.983315
2 -1.313574 1.946410 0.826350
3 0.015763 -0.267860 -2.228350
4 0.563111 1.195459 0.343168
or
mask = df.apply(lambda row: row["col"].val < 100, axis=1)
df[mask]
筛选列
从DataFrame里选择几个特定的列来组成新的df
假设,df有 col1-col20 一共20列,如果要从中选取几列组成新的df:
df = [[col1,col2,col3,col4]] #注意要用双括号
假设df有两种columns名称, 一个是中文的col1,一个是英文的col2
可以把col1和col2先做成字典(不能有重复的),如下:
col_dict = dict(zip(col1,col2))
use_col = [c1,c2,c3,c4...] #假设挑出来c1-c4..几列来做过滤,要找对其对应的英文的列名:
use_col_en = []
#对于use_col里每一个i,在字典col_dict中遍历得到相应的value,再添加到新的列表中,就得到了use_col_en
for i in use_col:
v = col_dict[i]
use_col_en.append(v)
df_new = df[use_col_en] #使用use_col_en来过滤原表
df_new.columns = use_col #将列名也替换
Dataframe 计算
两个df相加(次序忽略,结果相同)
df_new = df1.add(df2,fill_value=0).fillna(0)
单个df按条件配号
import numpy as np
conditions = [c1,c2,c3,c4,c5,c6] #其中,c1-c6是布尔表达式
values = [1,2,3,4,5,6]
df[column] = np.select(conditions, values)
posted on 2020-11-10 23:31 chengjon 阅读(18096) 评论(0) 编辑 收藏 举报