金融量化学习---Python, MySQL, Pandas

这里用来记录一些在金融领域,尤其是银行相关的资金、债券、票据中应用到的数据管理与分析, 编程等心得或笔记,以及个人的一点小小兴趣(易经八卦、藏密禅修)等

导航

List Series DataFrame Dict 使用详解

本文试着以例子的方式来演示List Series DataFrame Dict 在使用中的基本操作。

dataframe是pandas的数据类型;
ndarray(数组对象)是numpy的数据类型;是一个多维数组对象,该对象由两部分组成:1 实际的数据;2 描述这些数据的元数据。
list和dict是python的数据类型;
series是pandas的一种数据类型,Series是一个定长的,有序的字典,因为它把索引和值映射起来了。

通过以下例子,可以更加清楚它们的数据表示。

一,数据用例代码
首先,建立需要的数据:

import numpy as np
import pandas as pd
from pandas import *
from numpy import *
data = DataFrame(np.arange(16).reshape(4,4),index = list('ABCD'),columns=list('wxyz'))
df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]})
df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],'value': [1, 2, 3, 5]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],'value': [5, 6, 7, 8]})

data:

df:

df1:

df2



二,列表内置的方法

列表的append和extend的区别:

三,字典内置的方法

字典内置方法
按key取值 / 按key修改值 / 按key增加值

dic = {'a':1, 'b':2, 'c':3}
print(dic['a'])  # 1

dic['a'] = dic['a'] + 9
print(dic)   # {'a': 10, 'b': 2, 'c': 3}
dic['d'] = 666
print(dic)   # {'a': 10, 'b': 2, 'c': 3, 'd': 666}

成员运算(比较的是key)

dic = {'a':1, 'b':2, 'c':3}
print('name' in dic)  # False

for循环(对key循环)

dic = {'a':1, 'b':2, 'c':3}
for i in dic:
    print(i)
# 打印结果:
a
b
c

keys() / values() / items()

dic = {'a':1, 'b':2, 'c':3}
print(dic.keys())  # 获取所有key值  dict_keys(['a', 'b', 'c'])
print(dic.values())  # 获取所有value值   dict_values([1, 2, 3])
print(dic.items())   # 获取所有键值对    dict_items([('a', 1), ('b', 2), ('c', 3)])

get() 取值

dic = {'a':1, 'b':2, 'c':3}
print(dic.get('a'))  # 取得1
print(dic.get('qq'))   # 字典中没有要找的key值,则返回None
# 打印:None
print(dic.get('qq', 66))  # 字典中没有要找的key值,又给定数值,则返回该数值
# 打印:66

update() 扩展字典

dic1 = {'a':1}
dic2 = {'b':2}
dic1.update(dic2)
print(dic1)
# 打印结果:
{'a': 1, 'b': 2}

setdefault() 有则不更改,没有则增加

dic = {'a':1, 'b':2}
dic.setdefault('a',2)
print(dic)    # {'a': 1, 'b': 2}
dic.setdefault('c', 9)
print(dic)   # {'a': 1, 'b': 2, 'c': 9}

通过fromkeys快速生成字典:fromkeys(seq,value)
1、说明:
指定key值和value值,快速生成字典,其中, seq -- 字典键值列表。 value -- 可选参数, 设置键序列(seq)的值

>>> sd = {}
>>> d = ["q","w","e"]
>>> sd.fromkeys(d,1)
{'q': 1, 'w': 1, 'e': 1}

2、细节
(1)注意:value值为序列的效果

>>> sd = {}
>>> d = ["q","w","e"]
>>> v = [1,2,3]
>>> sd.fromkeys(d,v)#value值为序列的效果
{'q': [1, 2, 3], 'w': [1, 2, 3], 'e': [1, 2, 3]}

(2)多次赋值时,不会追加,会覆盖

>>> d = {"s":6}
>>> s = ["q","w","e"]
>>> d = d.fromkeys(s,1)#多次赋值操作
>>> print(d)#会将原来的值覆盖
{'q': 1, 'w': 1, 'e': 1}

3、实例:
一个函数传入一个List列表,生成一个字典:所有元素作为字典的key
正确写入:

>>> def func(L):
...     d_result = {}
...     for i in l:
...         d_result = d_result.fromkeys(L,1)#要有变量赋值,否则结果会为空
...     return d_result
...
>>> s = ["q","w","e"]
>>> func(s)
{'q': 1, 'w': 1, 'e': 1}

Series/ndarray/list/DataFrame/Dict相互转化

(一)序列 Series

Series <--> DataFrame
dataframe = pd.DataFrame({"XXX1":series1,"XXX2":series2})
series = dataframe[0]  #无标签时
series = dataframe["XXX"]  #有标签时

Serise <--> ndarray
series = pd.Series(ndarray) #这里的ndarray是1维的
ndarray = np.array(series)
ndarray = series.values

Series <--> list
series = pd.Series(list)
list = series.tolist()
list = list(series)

Series <--> dict
series = pd.Series(dict)
dict = series.to_dict()

(二) DataFrame

DataFrame <--> ndarray
ndarray = dataframe.values
dataframe = pd.DataFrame(ndarray)

DataFrame <--> list
list = dataframe.values.tolist()
dataframe = pd.DataFrame(list)

import pandas as pd
df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]})
df['a'].values.tolist()
[1, 3, 5, 7, 4, 5, 6, 4, 7, 8, 9]

or you can just use

df['a'].tolist()
[1, 3, 5, 7, 4, 5, 6, 4, 7, 8, 9]
To drop duplicates you can do one of the following:
df['a'].drop_duplicates().values.tolist()
[1, 3, 5, 7, 4, 6, 8, 9]
list(set(df[‘a’])) # as pointed out by EdChum
[1, 3, 4, 5, 6, 7, 8, 9]

convert df to list[list]
df.values.tolist()
conver series to list
Series.tolist()

DataFrame <--> dict
dataframe = pd.DataFrame.from_dict({0:dict1, 1:dict2})
dataframe = pd.DataFrame(dict)
dict = dataframe.to_dict()
dict = dataframe[['key_col', 'value_col']].set_index('key_col').to_dict()
(dict = dict['value_col'])

(三) 其它 list

dict --> list
list = dict.values() # list of values
list = dict.keys() # list of keys
list = list(dict) # list of keys

ndarray <--> list
list = ndarray.tolist()
ndarray = np.array(list)

tuple <--> list
list = list(tuple)
tuple = tuple(list)

Index --> list
dataframe.columns.tolist()

字典的练习题

  1. 有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中
    即:
lt = [11,22,33,44,55,66,77,88,99,90]
dic = {'k1': [], 'k2': []}
for i in lt:
    if i > 66:
        dic['k1'].append(i)
    else:
        dic['k2'].append(i)
print(dic)

2.统计s='hello alex alex say hello sb sb'中每个单词的个数
结果如:{'hello': 2, 'alex': 2, 'say': 1, 'sb': 2}

s = 'hello alex alex say hello sb sb'
dic = {}
for i in s.split():
    dic.setdefault(i,s.count(i))
print(dic)
  1. 写代码,有如下变量,请按照要求实现每个功能 name = " aleX"
  1. 移除 name 变量对应的值两边的空格,并输出处理结果
name = " aleX"
print(name.strip())
  1. 判断 name 变量对应的值是否以 "al" 开头,并输出结果
print(name.startswith('a1'))
  1. 判断 name 变量对应的值是否以 "X" 结尾,并输出结果
print(name.endswith('X'))
  1. 将 name 变量对应的值中的 “l” 替换为 “p”,并输出结果
print(name.replace('l', 'p'))
  1. 将 name 变量对应的值根据 “l” 分割,并输出结果。
print(name.split('l'))
  1. 请输出 name 变量对应的值的第 2 个字符?
print(name[1])
  1. 请输出 name 变量对应的值的前 3 个字符?
print(name[0:3])
  1. 请输出 name 变量对应的值的后 2 个字符?
print(name[3:])
  1. 请输出 name 变量对应的值中 “e” 所在索引位置?
print(name.find('e'))
  1. 获取子序列,去掉最后一个字符。如: oldboy 则获取 oldbo。
s = 'oldboy'
print(s.rstrip('y'))

参考资料
pandas入门
https://pda.readthedocs.io/en/latest/chp5.html
pandas.DataFrame.merge 用法的官方文档
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
dataframe = pd.DataFrame.from_dict()具体参数请参考文档:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.from_dict.html
dict = dataframe.to_dict()具体参数请参考文档:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_dict.html
List, Dict, Array, Series, DataFrame 相互转换
https://yam.gift/2017/02/15/2017-02-15-list-dict-series-dataframe-ndarray-transform/

posted on 2020-10-13 10:03  chengjon  阅读(611)  评论(0编辑  收藏  举报