『论文』PointPainting

『论文』PointPainting

2. PointPainting Architecture#

image

2.1. Image Based Semantics Network#

The image sem.seg. network takes in an input image and outputs per pixel class scores. In this paper, the segmentation scores for our KITTI experiments are generated from DeepLabv3+ [2, 36, 19], while for nuScenes experiments we trained a custom, lighter, network. However, we note that PointPainting is agnostic to the image segmentation network design

2.2. PointPainting#

image

The output of the segmentation network is C class scores, where for KITTI C = 4 (car, pedestrian, cyclist, background) and for nuScenes C = 11 (10 detection classes plus background)

2.3. Lidar Detection#

The decorated point clouds can be consumed by any lidar network that learns an encoder, since PointPainting just changes the input dimension of the lidar points.

In this paper, we demon- strate that PointPainting works with three different lidar de- tectors: PointPillars [11], VoxelNet [34, 29], and PointR- CNN [21]

作者:traviscui

出处:https://www.cnblogs.com/traviscui/p/16560039.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   traviscui  阅读(11)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
more_horiz
keyboard_arrow_up dark_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示