『论文』PointPainting
『论文』PointPainting
2. PointPainting Architecture#
2.1. Image Based Semantics Network#
The image sem.seg. network takes in an input image and outputs per pixel class scores. In this paper, the segmentation scores for our KITTI experiments are generated from DeepLabv3+ [2, 36, 19], while for nuScenes experiments we trained a custom, lighter, network. However, we note that PointPainting is agnostic to the image segmentation network design
2.2. PointPainting#
The output of the segmentation network is C class scores, where for KITTI C = 4 (car, pedestrian, cyclist, background) and for nuScenes C = 11 (10 detection classes plus background)
2.3. Lidar Detection#
The decorated point clouds can be consumed by any lidar network that learns an encoder, since PointPainting just changes the input dimension of the lidar points.
In this paper, we demon- strate that PointPainting works with three different lidar de- tectors: PointPillars [11], VoxelNet [34, 29], and PointR- CNN [21]
作者:traviscui
出处:https://www.cnblogs.com/traviscui/p/16560039.html
版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异