关于sklearn,监督学习几种模型的对比

# K近邻,适用于小型数据集,是很好的基准模型,容易解释
from sklearn.neighbors import KNeighborsClassifier

# 线性模型,非常可靠的首选算法,适用于很大的数据集,也适用于高维数据
from sklearn.linear_model import LinearRegression

# 朴素贝叶斯,只适用于分类问题,比线性模型速度还快,适用于非常大的数据集和高维数据,但精度通常低于线性模型
from sklearn.linear_model import BayesianRidge

# 决策树,速度很快,不需要数据缩放,可以可视化,很容易解释
from sklearn.tree import DecisionTreeClassifier

# 随机森林,几乎总是比单个决策树的表现要好,鲁棒性很好,非常强大。不需要数据缩放,不适用于高维稀疏矩阵
from sklearn.ensemble import RandomForestClassifier

# 梯度提升决策树,精度通常比随机森林略高,与随机森林相比,训练速度更慢,但是预测速度更快,需要的内存也少,比随机森林需要更多的参数调节
from sklearn.ensemble import GradientBoostingClassifier

# 支持向量机,对于特征含义相似的中等大小的数据集很强大,需要数据缩放,对参数敏感
from sklearn.svm import SVC

# 神经网络,可以构建非常复杂的模型,特别是对于大型数据而言。对数据缩放敏感,对参数选取敏感,大型网络需要很长的训练时间
from sklearn.neural_network import MLPClassifier

  

posted @ 2018-08-30 10:07  古明地盆  阅读(1418)  评论(0编辑  收藏  举报