《深度剖析CPython解释器》1. Python中一切皆对象,这里的对象究竟是什么?解密Python中的对象模型

Python中一切皆对象

关于Python,你肯定听过这么一句话:"Python中一切皆对象"。没错,在Python的世界里,一切都是对象。整型是一个对象、字符串是一个对象、字典是一个对象,甚至int、str、list等等,再加上我们使用class自定义的类,它们也是对象。

像int、str、list等基本类型,以及我们自定义的类,由于它们可以表示类型,因此我们称之为类型对象;类型对象实例化得到的对象,我们称之为实例对象。不管是哪种对象,它们都属于对象。

因此Python中面向对象的理念贯彻的非常彻底,面向对象中的"类"和"对象"在Python中都是通过"对象"实现的。

在面向对象理论中,存在着"类"和"对象"两个概念,像int、dict、tuple、以及使用class关键字自定义的类型对象实现了面向对象理论中"类"的概念,而123、(1, 2, 3),"xxx"等等这些实例对象则实现了面向对象理论中"对象"的概念。但是在Python中,面向对象的"类"和"对象"都是通过对象实现的。

我们举个栗子:

>>> # int它是一个类,因此它属于类型对象, 类型对象实例化得到的对象属于实例对象
>>> int  
<class 'int'>
>>> int('0123') 
123
>>>

因此可以用一张图来描述面向对象在Python中的体现:

类型、对象体系

a是一个整数(实例对象),其类型是int(类型对象)。

>>> a = 123
>>> a
123
>>> type(a)
<class 'int'>
>>> isinstance(a, int)
True
>>>

但是问题来了,按照面向对象的理论来说,对象是由类实例化得到的,这在Python中也是适用的。既然是对象,那么就必定有一个类来实例化它,换句话说对象一定要有类型。至于一个对象的类型是什么,就看这个对象是被谁实例化的,被谁实例化那么类型就是谁。而我们说Python中一切皆对象,所以像int、str、tuple这些内置的类型也是具有相应的类型的,那么它们的类型又是谁呢?

我们使用type函数查看一下就好了。

>>> type(int)
<class 'type'>
>>> type(str)
<class 'type'>
>>> type(dict)
<class 'type'>
>>> type(type)
<class 'type'>
>>>

我们看到类型对象的类型,无一例外都是type。type应该是初学Python的时候就接触了,当时使用type都是为了查看一个对象的类型,然而type的作用远没有这么简单,我们后面会说,总之我们目前看到类型对象的类型是type。

所以int、str等类型对象是type的对象,而type我们也称其为元类,表示类型对象的类型。至于type本身,它的类型还是type,所以它连自己都没放过,把自己都变成自己的对象了。

因此在Python中,你能看到的任何对象都是有类型的,我们可以使用type函数查看,也可以获取该对象的__class__属性查看。

所以:实例对象、类型对象、元类,Python中任何一个对象都逃不过这三种身份。

Python中还有一个特殊的类型(对象),叫做object,它是所有类型对象的基类。不管是什么类,内置的类也好,我们自定义的类也罢,它们都继承自object。因此,object是所有类型对象的"基类"、或者说"父类"。

>>> issubclass(int, object)
True
>>>

因此,综合以上关系,我们可以得到下面这张关系图:

我们自定义的类型也是如此,举个栗子:

class Female:
    pass


print(type(Female))  # <class 'type'>
print(issubclass(Female, object))  # True

在Python3中,自定义的类即使不显式的继承object,也会默认继承自object。

那么我们自定义再自定义一个子类,继承自Female呢?

class Female:
    pass


class Girl(Female):
    pass


# 自定义类的类型都是type
print(type(Girl))  # <class 'type'>

# 但Girl继承自Female, 所以它是Female的子类
print(issubclass(Girl, Female))  # True
# 而Female继承自object, 所以Girl也是object的子类
print(issubclass(Girl, object))  # True


# 这里需要额外多提一句实例对象, 我们之前使用type得到的都是该类的类型对象
# 换句话说谁实例化得到的它, 那么对它使用type得到的就是谁
print(type(Girl()))  # <class '__main__.Girl'>
print(type(Female()))  # <class '__main__.Female'>

# 但是我们说Girl的父类是Female, Female的父类是object
# 所以Girl的实例对象也是Female和object的实例对象, Female的实例对象也是object的实例对象
print(isinstance(Girl(), Female))  # True
print(isinstance(Girl(), object))  # True

因此上面那张关系图就可以变成下面这样:

我们说可以使用type和__class__查看一个对象的类型,并且还可以通过isinstance来判断该对象是不是某个已知类型的实例对象;那如果想查看一个类型对象都继承了哪些类该怎么做呢?我们目前都是使用issubclass来判断某个类型对象是不是另一个已知类型对象的子类,那么可不可以直接获取某个类型对象都继承了哪些类呢?

答案是可以的,方法有三种,我们分别来看一下:

class A: pass

class B: pass

class C(A): pass

class D(B, C): pass

# 首先D继承自B和C, C又继承A, 我们现在要来查看D继承的父类
# 方法一: 使用__base__
print(D.__base__)  # <class '__main__.B'>

# 方法二: 使用__bases__
print(D.__bases__)  # (<class '__main__.B'>, <class '__main__.C'>)

# 方法三: 使用__mro__
print(D.__mro__)
# (<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>)
  • __base__: 如果继承了多个类, 那么只显示继承的第一个类, 没有显示继承则返回一个<class 'object'>;
  • __bases__: 返回一个元组, 会显示所有直接继承的父类, 如果没有显示的继承, 则返回(<class 'object'>,);
  • __mro__: mro表示Method Resolution Order, 表示方法查找顺序, 会从自身除法, 找到最顶层的父类, 因此返回自身、继承的基类、以及基类继承的基类, 一直找到object;

最后我们来看一下type和object,估计这两个老铁之间的关系会让很多人感到困惑。

我们说type是所有类的元类,而object是所有的基类,这就说明type是要继承自object的,而object的类型是type。

>>> type.__base__
<class 'object'>
>>> object.__class__
<class 'type'>
>>>

这就怪了,这难道不是一个先有鸡还是先有蛋的问题吗?其实不是的,这两个对象是共存的,它们之间的定义其实是互相依赖的。至于到底是怎么肥事,我们后面在看解释器源码的时候就会很清晰了。

总之目前记住两点:

  • 1. type站在类型金字塔的最顶端, 任何的对象按照类型追根溯源, 最终得到的都是type;
  • 2. object站在继承金字塔的最顶端, 任何的类型对象按照继承追根溯源, 最终得到的都是object;

我们说type的类型还是type,但是object的基类则不再是object,而是一个None。为什么呢?其实答案很简单,我们说Python在查找属性或方法的时候,会回溯继承链,自身如果没有的话,就会按照__mro__指定的顺序去基类中查找。所以继承链一定会有一个终点,否则就会像没有出口的递归一样出现死循环了。

最后将上面那张关系图再完善一下的话:

因此上面这种图才算是完整,其实只看这张图我们就能解读出很多信息。比如:实例对象的类型是类型对象,类型对象的类型是元类;所有的类型对象的基类都收敛于object,所有对象的类型都收敛于type。因此Python算是将一切皆对象的理念贯彻到了极致,也正因为如此,Python才具有如此优秀的动态特性。

事实上,目前介绍的有些基础了,但Python中的对象的概念确实非常重要。为了后面再分析源码的时候能够更轻松,因此我们有必要系统地回顾一下,并且上面的关系图会使我们在后面的学习变得轻松。因为等到看解释器的时候,我们可就没完了,就不那么轻松了(なん~~~てね)。

Python中的变量只是个名字

Python中的变量只是个名字,站在C语言的角度来说的话,Python中的变量存储的只是对象的内存地址,或者说指针,这个指针指向的内存存储的才是对象。

所以在Python中,我们都说变量指向了某个对象。在其它静态语言中,变量相当于是为某块内存起的别名,获取变量等于获取这块内存所存储的值。而Python中变量代表的内存存储的不是对象,只是对象的指针。

我们用两段代码,一段C语言的代码,一段Python的代码,来看一下差别。

#include <stdio.h>

void main()
{
    int a = 123;
    printf("address of a = %p\n", &a);

    a = 456
    printf("address of a = %p\n", &a);
}
//输出结果
/*
address of a = 0x7fffa94de03c
address of a = 0x7fffa94de03c
*/

我们看到前后输出的地址是一样的,再来看看Python的。

a = 666
print(hex(id(a)))  # 0x1b1333394f0

a = 667
print(hex(id(a)))  # 0x1b133339510

然而我们看到Python中变量a的地址前后发生了变化,我们分析一下原因。

首先在C中,创建一个变量的时候必须规定好类型,比如int a = 666,那么变量a就是int类型,以后在所处的作用域中就不可以变了。如果这时候,再设置a = 777,那么等于是把内存中存储的666换成777,a的地址和类型是不会变化的。

而在Python中,a = 666等于是先开辟一块内存,存储的值为666,然后让变量a指向这片内存,或者说让变量a存储这块内存的指针。然后a = 777的时候,再开辟一块内存,然后让a指向存储777的内存,由于是两块不同的内存,所以它们的地址是不一样的。

所以Python中的变量只是一个和对象关联的名字罢了,它代表的是对象的指针。换句话说Python中的变量就是个便利贴,可以贴在任何对象上,一旦贴上去了,就代表这个对象被引用了。

我们再来看看变量之间的传递,在Python中是如何体现的。

a = 666
print(hex(id(a)))  # 0x1e6c51e3cf0

b = a
print(hex(id(b)))  # 0x1e6c51e3cf0

我们看到打印的地址是一样的,我们再用一张图解释一下。

我们说a = 666的时候,先开辟一份内存,再让a存储对应内存的指针;然后b = a的时候,会把a的地址拷贝一份给b,所以b存储了和a相同的地址,它们都指向了同一个对象。

因此说Python是值传递、或者引用传递都是不准确的,准确的说Python是变量之间的赋值传递,对象之间的引用传递。

因为Python中的变量本质上就是一个指针,所以在b = a的时候,等于把a指向的对象的地址(a本身)拷贝一份给b,所以对于变量来说是赋值传递;然后a和b又都是指向对象的指针,因此对于对象来说是引用传递。

另外还有最关键的一点,我们说Python中的变量是一个指针,当传递一个变量的时候,传递的是指针;但是在操作一个变量的时候,会操作变量指向的内存。

所以id(a)获取的不是a的地址,而是a指向的内存的地址(在底层其实就是a),同理b = a,是将a本身,或者说将a存储的、指向某个具体的对象的地址传递给了b。

另外在C的层面上,a和b属于指针变量,那么a和b有没有地址呢?显然是有的,只不过在Python中你是看不到的,Python解释器只允许你看到对象的地址。

最后提一下变量的类型

我们说变量的类型其实不是很准确,应该是变量指向(引用)的对象的类型,因为我们说Python中变量是个指针,操作指针会操作指针指向的内存,所以我们使用type(a)查看的是变量a指向的内存的类型,当然为了方便也会直接说变量的类型,理解就行。那么问题来了,我们在创建一个变量的时候,并没有显示的指定类型啊,但Python显然是有类型的,那么Python是如何判断一个变量指向的是什么类型的数据呢?

答案是:解释器是通过靠猜的方式,通过你赋的值(或者说变量引用的值)来推断类型。所以在Python中,如果你想创建一个变量,那么必须在创建变量的时候同时赋值,否则解释器就不知道这个变量指向的数据是什么类型。所以Python是先创建相应的值,这个值在C中对应一个结构体,结构体里面有一个成员专门用来存储该值对应的类型。当创建完值之后,再让这个变量指向它,所以Python中是先有值后有变量。但显然C中不是这样的,因为C中变量代表的内存所存储的就是具体的值,所以C中可以直接声明一个变量的同时不赋值。因为C要求声明变量的同时必须指定类型,所以声明变量的同时,其类型和内存大小就已经固定了。而Python中变量代表的内存是个指针,它只是指向了某个对象,所以由于其便利贴的特性,可以贴在任意对象上面,但是不管贴在哪个对象,你都必须先有对象才可以,不然变量贴谁去?

另外,尽管Python在创建变量的时候不需要指定类型,但Python是强类型语言,强类型语言,强类型语言,重要的事情说三遍。而且是动态强类型,因为类型的强弱和是否需要显示声明类型之间没有关系。

可变对象与不可变对象

我们说一个对象其实就是一片被分配的内存空间,内存中存储了相应的值,不过这些空间可以是连续的,也可以是不连续的。

不可变对象一旦创建,其内存中存储的值就不可以再修改了。如果想修改,只能创建一个新的对象,然后让变量指向新的对象,所以前后的地址会发生改变。而可变对象在创建之后,其存储的值可以动态修改。

像整型就是一个不可变对象。

>>> a = 666
>>> id(a)
1365442984464
>>> a += 1
>>> id(a)
1365444032848
>>>

我们看到在对a执行+1操作时,前后地址发生了变化,所以整型不支持本地修改,因此是一个不可变对象;

原来a = 666,而我们说操作一个变量等于操作这个变量指向的内存,所以a+=1,会将a指向的整型对象666和1进行加法运算,得到667。所以会开辟新的空间来存储这个667,然后让a指向这片新的空间,至于原来的666所占的空间怎么办,Python解释器会看它的引用计数,如果不为0代表还有变量引用(指向)它,如果为0证明没有变量引用了,所以会被回收。

关于引用计数,我们后面会详细说,目前只需要知道当一个对象被一个变量引用的时候,那么该对象的引用计数就会加1。有几个变量引用,那么它的引用计数就是几。

可能有人觉得,每次都要创建新对象,销毁旧对象,效率肯定会很低吧。事实上确实如此,但是后面我们会从源码的角度上来看Python如何通过小整数对象池等手段进行优化。

而列表是一个可变对象,它是可以修改的。

这里先多提一句,Python中的对象本质上就是C中malloc函数为结构体实例在堆区申请的一块内存。Python中的任何对象在C中都会对应一个结构体,这个结构体除了存放具体的值之外,还存放了一些额外的信息,这个我们在剖析Python中的内置类型的实例对象的时候会细说。

首先Python中列表,当然不光是列表,还有元组、集合,这些容器它们的内部存储的也不是具体的对象,而是对象的指针。比如:lst = [1, 2, 3],你以为lst存储的是三个整型对象吗?其实不是的,lst存储的是三个整型对象的指针,当我们使用lst[0]的时候,拿到的是第一个元素的指针,但是操作(比如print)的时候会自动操作(print)指针指向的内存。

不知道你是否思考过,Python底层是C来实现的,所以Python中的列表的实现必然要借助C中的数组。可我们知道C中的数组里面的所有元素的类型必须一致,但列表却可以存放任意的元素,因此从这个角度来讲,列表里面的元素它就就不可能是对象,因为不同的对象在底层对应的结构体是不同的,所以这个元素只能是指针。

可能有人又好奇了,不同对象的指针也是不同的啊,是的,但C中的指针是可以转化的。Python底层将所有对象的指针,都转成了PyObject的指针,这样不就是同一种类型的指针了吗?关于这个PyObject,它是我们后面要剖析的重中之重,这个PyObject贯穿了我们的整个系列。目前只需要知道Python中的列表存储的值,在底层是通过一个PyObject *类型的数据来维护的。

>>> lst = [1, 2, 3]
>>> id(lst)
1365442893952
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]
>>> id(lst)
1365442893952
>>>

我们看到列表在添加元素的时候,前后地址并没有改变。列表在C中是通过PyListObject实现的,我们在介绍列表的时候会细说。这个PyListObject内部除了一些基本信息之外,还有一个成员叫ob_item,它是一个PyObject的二级指针,指向了我们刚才说的PyObject *类型的数组的首个元素的地址。

结构图如下:

显然图中的指针数组是用来存储具体的对象的指针的,每一个指针都指向了相应的对象(这里是整型对象)。可能有人注意到,整型对象的顺序有点怪,其实我是故意这么画的。因为PyObject *数组内部的元素是连续且有顺序的,但是指向的整型对象则是存储在堆区的,它们的位置是任意性的。但是不管这些整型对象存储在堆区的什么位置,它们和数组中的指针都是一一对应的,我们通过索引是可以正确获取到指向的对象的。

另外我们还可以看到一个现象,那就是Python中的列表在底层是分开存储的,因为PyListObject结构体实例并没有存储相应的指针数组,而是存储了指向这个指针数组的二级指针。显然我们添加、删除、修改元素等操作,都是通过这个二级指针来间接操作这个指针数组。

为什么要这么做?

因为在Python中一个对象一旦被创建,那么它在内存中的大小就不可以变了。所以这就意味着那些可以容纳可变长度数据的可变对象,要在内部维护一个指向可变大小的内存区域的指针。而我们看到PyListObject正是这么做的,指针数组的长度、内存大小是可变的,所以PyListObject内部并没有直接存储它,而是存储了指向它的二级指针。但是Python在计算内存大小的时候是会将这个指针数组也算进去的,所以Python中列表的大小是可变的,但是底层对应的PyListObject实例的大小是不变的,因为可变长度的指针数组没有存在PyListObject里面。但为什么要这么设计呢?

这么做的原因就在于,遵循这样的规则可以使通过指针维护对象的工作变得非常简单。一旦允许对象的大小可在运行期改变,那么我们就可以考虑如下场景。在内存中有对象A,并且其后面紧跟着对象B。如果运行的某个时候,A的大小增大了,这就意味着必须将A整个移动到内存中的其他位置,否则A增大的部分会覆盖掉原本属于B的数据。只要将A移动到内存的其他位置,那么所有指向A的指针就必须立即得到更新。可想而知这样的工作是多么的繁琐,而通过一个指针去操作就变得简单多了。

定长对象与变长对象

Python中一个对象占用的内存有多大呢?相同类型的实例对象的大小是否相同呢?试一下就知道了,我们可以通过sys模块中getsizeof函数查看一个对象所占的内存。

import sys

print(sys.getsizeof(0))  # 24
print(sys.getsizeof(1))  # 28
print(sys.getsizeof(2 << 33))  # 32


print(sys.getsizeof(0.))  # 24
print(sys.getsizeof(3.14))  # 24
print(sys.getsizeof((2 << 33) + 3.14))  # 24

我们看到整型对象的大小不同,所占的内存也不同,像这种内存大小不固定的对象,我们称之为变长对象;而浮点数所占的内存都是一样的,像这种内存大小固定的对象,我们称之为定长对象。

至于Python是如何计算对象所占的内存,我们在剖析具体对象的时候会说,因为这要涉及到底层对应的结构体。

而且我们知道Python中的整数是不会溢出的,而C中的整型显然是有最大范围的,那么Python是如何做到的呢?答案是Python在底层是通过C的32位整型数组来存储自身的整型对象的,通过多个32位整型组合起来,以支持存储更大的数值,所以整型越大,就需要越多的32位整数。而32位整数是4字节,所以我们上面代码中的那些整型,都是4字节、4字节的增长。

当然Python中的对象在底层都是一个结构体,这个结构体中除了维护具体的值之外,还有其它的成员信息,在计算内存大小的时候,它们也是要考虑在内的,当然这些我们后面会说。

而浮点数的大小是不变的,因为Python的浮点数的值在C中是通过一个double来维护的。而C中的值的类型一旦确定,大小就不变了,所以Python的float也是不变的。

但是既然是固定的类型,肯定范围是有限的,所以当浮点数不断增大,会牺牲精度来进行存储。如果实在过大,那么会抛出OverFlowError。

>>> int(1000000000000000000000000000000000.)  # 牺牲了精度
999999999999999945575230987042816
>>> 10 ** 1000  # 不会溢出
1000000000000000......
>>>
>>> 10. ** 1000  # 报错了
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
OverflowError: (34, 'Result too large')
>>>

还有字符串,字符串毫无疑问肯定是变长对象,因为长度不同大小不同。

import sys

print(sys.getsizeof("a"))  # 50
print(sys.getsizeof("abc"))  # 52

我们看到多了两个字符,多了两个字节,这很好理解。但是这些说明了一个空字符串要占49个字节,我们来看一下。

import sys

print(sys.getsizeof(""))  # 49

显然是的,显然这49个字节是用来维护其它成员信息的,因为底层的结构体除了维护具体的值之外,还要维护其它的信息,比如:引用计数等等,这些在分析源码的时候会详细说。

小结

我们这一节介绍了Python中的对象体系,我们说Python中一切皆对象,类型对象和实例对象都属于对象;还说了对象的种类,根据是否支持本地修改可以分为可变对象和不可变对象,根据占用的内存是否不变可以分为定长对象和变长对象;还说了Python中变量的本质,Python中的变量本质上是一个指针,而变量的名字则存储在对应的名字空间(或者说命名空间)中,当然名字空间我们没有说,是因为这些在后续系列会详细说(又是后续, 不管咋样, 坑先挖出来),不过这里可以先补充一下。

名字空间分为:全局名字空间(存储全局变量)、局部名字空间(存储局部变量)、闭包名字空间(存储闭包变量)、内建名字空间(存储内置变量, 比如int、str, 它们都在这里),而名字空间又分为静态名字空间和动态名字空间:比如局部名字空间,因为函数中的局部变量在编译的时候就可以确定,所以函数对应的局部名字空间使用一个数组存储;而全局变量在运行时可以进行动态添加、删除,因此全局名字空间使用的是一个字典来保存,字典的key就是变量的名字(依旧是个指针,底层是指向字符串(PyUnicodeObject)的指针),字典的value就是变量指向的对象的指针(或者说变量本身)。

a = 123
b = "xxx"

# 通过globals()即可获取全局名字空间
print(globals())  #{..., 'a': 123, 'b': 'xxx'}

# 我们看到虽然显示的是变量名和变量指向的值
# 但是在底层,字典存储的键值对也是指向具体对象的指针
# 只不过我们说操作指针会操作指向的内存,所以这里print打印之后,显示的也是具体的值,但是存储的是指针
# 至于对象本身,则存储在堆区,并且被指针指向



#  此外,我们往全局名字空间中设置一个键值对,也等价于创建了一个全局变量
globals()["c"] = "hello"
print(c)  # hello


# 此外这个全局名字空间是唯一的,即使你把它放在函数中也是一样
def foo():
    globals()["d"] = "古明地觉"


# foo一旦执行,{"d": "古明地觉"}就设置进了全局名字空间中
foo()  
print(d)  # 古明地觉

怎么样,是不是有点神奇呢?所以名字空间是Python作用域的灵魂,它严格限制了变量的活动范围,当然这些后面都会慢慢的说,因为饭要一口一口吃。因此这一节算是回顾基础吧,虽说是基础但是其实也涉及到了一些解释器的知识,不过这一关我们迟早是要过的,所以就提前接触一下吧。

posted @ 2020-07-28 14:53  古明地盆  阅读(7165)  评论(5编辑  收藏  举报