分布式任务队列Celery入门与进阶(二)

进阶使用

对于普通的任务来说可能满足不了我们的任务需求,所以还需要了解一些进阶用法,Celery提供了诸多调度方式,例如任务编排、根据任务状态执行不同的操作、重试机制等,以下会对常用高阶用法进行讲述。

定时任务&计划任务

Celery的提供的定时任务主要靠schedules来完成,通过beat组件周期性将任务发送给woker执行。在示例中,新建文件period_task.py,并添加任务到配置文件中:

period_task.py:

from project import app
from celery.schedules import crontab

@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
    sender.add_periodic_task(10.0, add.s(1,3), name='1+3=') # 每10秒执行add
    sender.add_periodic_task(
        crontab(hour=16, minute=56, day_of_week=1),      #每周一下午四点五十六执行sayhai
        sayhi.s('wd'),name='say_hi'
    )



@app.task
def add(x,y):
    print(x+y)
    return x+y


@app.task
def sayhi(name):
    return 'hello %s' % name

config.py

BROKER_URL = 'redis://127.0.0.1:6379/0' # Broker配置,使用Redis作为消息中间件

CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # BACKEND配置,这里使用redis

CELERY_RESULT_SERIALIZER = 'json' # 结果序列化方案

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间

CELERY_TIMEZONE='Asia/Shanghai'   # 时区配置

CELERY_IMPORTS = (     # 指定导入的任务模块,可以指定多个
    'project.tasks',
    'project.period_task', #定时任务
)

任务编排

  在很多情况下,一个任务需要由多个子任务或者一个任务需要很多步骤才能完成,Celery同样也能实现这样的任务,完成这类型的任务通过以下模块完成:

  • group: 并行调度任务

  • chain: 链式任务调度

  • chord: 类似group,但分header和body2个部分,header可以是一个group任务,执行完成后调用body的任务

  • map: 映射调度,通过输入多个入参来多次调度同一个任务

  • starmap: 类似map,入参类似*args

  • chunks: 将任务按照一定数量进行分组

tasks.py:

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
from project import app

@app.task
def add(x,y):
    return x+y


@app.task
def mul(x,y):
    return x*y


@app.task
def sum(data_list):
    res=0
    for i in data_list:
        res+=i
    return res

 

posted @ 2020-08-02 12:49  Tracydzf  阅读(142)  评论(0编辑  收藏  举报