LeetCode 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树
第108题
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
给定有序数组: [-10,-3,0,5,9],
一个可能的答案是:[0,-3,9,-10,null,5],它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/convert-sorted-array-to-binary-search-tree
解题思路
- 从定义我们知道,BST的中序遍历为一个递增序列,给定的数组其实就是中序遍历结果
- 取有序数组的中间值做根,左边部分做左树,右边部分做右树如此循环迭代去二分就可还原这棵BST树
代码实现
1.二分+递归实现
每次取数组的中间值,作为二分搜索树的中间节点,依次递归下去即可
//二分+递归实现
class Solution108_1 {
public TreeNode sortedArrayToBST(int[] nums) {
return convertToBST(nums, 0, nums.length - 1);
}
TreeNode convertToBST(int[] nums, int begin, int end) {
if (begin > end) return null;
//取中值
int mid = begin + (end - begin) / 2;
TreeNode root = new TreeNode(nums[mid]);
//左叶子树
root.left = convertToBST(nums, begin, mid - 1);
//右叶子树
root.right = convertToBST(nums, mid + 1, end);
return root;
}
}
2.利用堆栈,去递归化实现
- 定义一个栈,用来存将要处理数组的左索引和右索引值
- 定义另一个栈,用来存树的节点,因为节点是先初始化,后更新节点值的迭代过程。所以需要借用堆栈先建好节点,建立好关系。
//非递归实现
class Solution108_2 {
public TreeNode sortedArrayToBST(int[] nums) {
if (nums == null || nums.length == 0) return null;
Stack<Integer> stack = new Stack<Integer>();
//数组最大索引值入栈
stack.add(nums.length - 1);
//数组最小索引值入栈
stack.add(0);
Stack<TreeNode> tree = new Stack<TreeNode>();
TreeNode root = new TreeNode(0);
//随便new树节点入栈
tree.add(root);
while (!stack.isEmpty()) {
int left = stack.pop();
int right = stack.pop();
//求出中间节点索引值
int mid = left + (right - left) / 2;
TreeNode node = tree.pop();
//更新根节点值
node.val = nums[mid];
//计算左叶子节点最大最小索引值
int r = mid - 1, l = left;
//如果存在左叶子节点
if (l <= r) {
node.left = new TreeNode(0);
//随便new个树节点入栈
tree.add(node.left);
//对应右索引值入栈
stack.push(r);
//对应左索引值入栈
stack.push(l);
}
//计算右节点最大最小索引值
l = mid + 1;
r = right;
if (l <= r) {
node.right = new TreeNode(0);
//随便new个树节点入栈
tree.add(node.right);
//对应右索引值入栈
stack.push(r);
//对应左索引值入栈
stack.add(l);
}
}
return root;
}
}
总结
不出所料,通过提交代码发现堆栈实现会比递归执行效率慢很多,这是因为:
- 堆栈实现需要频繁的push(入栈)、pop(出栈)操作导致性能下降