Bzoj 2752 高速公路 (期望,线段树)

Bzoj 2752 高速公路 (期望,线段树)

题目链接
这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可
\(1\)\(2\)号点的边连得是. 编号为\(1\)的点.查询的时候把\(r - 1\)就好了.
这里的期望显然就是路径的平均值.
期望值: $$\dfrac{\sum_{i=l}r\sum_{j=l}dis[i][j]}{C_{r-l+1}^2}$$
下面部分可以直接算出:
上面这一部分比较难维护.
考虑每一条边会被走过多少次.

\[ans = \sum_{i=l}^ra[i]*(r-i+1)(i-l+1) \]

相当于枚举这个点左右两条路.
然后拆开.
再化简一下式子.
形成下面这个模样.

\[ans = (r - l + 1 - r * l) * sum1 + (r + l) * sum2 - sum3 \]

其中
\(sum1 = \sum_{i=l}^r a[i]\)
\(sum2 = \sum_{i=l}^r a[i]*i\)
\(sum3 = \sum_{i=l}^r a[i] * i * i\)
然后我们用线段树维护一下.
考虑合并.
\(sum1 = lson_{sum1} + rson_{sum1}\)
\(sum2 = lson_{sum2} + rson_{sum2}\)
\(sum3 = lson_{sum3} + rson_{sum3}\)
合并是比较简单了.
添加值得时候如何添加?
设添加的值为\(k\)
此时的式子就变成了.
\(sum1\)比较简单,直接加上区间的长度乘以\(k\)即可.
\(sum2\)要加上\(k*\sum i\)然后维护一下区间\(i\)的和.我们称它为\(sum5\),或者考虑等差数列求和的方法也可以.
\(sum3\)要加上\(k * \sum i ^2\)我们这里必须要维护\(sum4\),它代表\(\sum i^2\)
\(sum4\)\(sum5\) 是一个定值.在建树的时候更新就行了.
然后这个题就完成了.
特别注意的是.由于我们设边为点.所以要\(r -= 1\)
如果直接\(r -=1\)的话,下面的分母要改成.\(C_{r-l + 2}^2\)
CODE:

#include <iostream>
#include <cstdio>
#define lson now << 1
#define rson now << 1 | 1
#define ll long long
const ll maxN = 100000 + 7;

inline ll read() {
    ll x = 0,f = 1;char c = getchar();
    while(c < '0' || c > '9') {if(c == '-')f = -1;c = getchar();}
    while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
    return x * f;
}

ll gcd(ll a,ll b) {
    return !b ? a : gcd(b,a % b);
}

struct Node {
    ll sum[6];
    ll lazy;
    ll l,r;
}tree[maxN << 2];
ll sum1,sum2,sum3;

void updata(ll now) {
    tree[now].sum[1] = tree[lson].sum[1] + tree[rson].sum[1];
    tree[now].sum[2] = tree[lson].sum[2] + tree[rson].sum[2];
    tree[now].sum[3] = tree[lson].sum[3] + tree[rson].sum[3];
    return ;
}

void build(ll l,ll r,ll now) {
    tree[now].l = l;tree[now].r = r;
    if(l == r) {
        tree[now].sum[4] = l * l;
        tree[now].sum[5] = l;
        return ;
    }
    ll mid = (l + r) >> 1;
    build(l,mid,lson);
    build(mid + 1,r,rson);
    tree[now].sum[4] = tree[lson].sum[4] + tree[rson].sum[4];
    tree[now].sum[5] = tree[lson].sum[5] + tree[rson].sum[5];
    return ;
}

void work(ll now,ll k) {
    tree[now].sum[1] += (tree[now].r - tree[now].l + 1) * k;
    tree[now].sum[2] += k * tree[now].sum[5];
    tree[now].sum[3] += k * tree[now].sum[4];
    tree[now].lazy += k;
}

void pushdown(ll now) {
    work(lson,tree[now].lazy);
    work(rson,tree[now].lazy);
    tree[now].lazy = 0;
    return ;
}

void modify(ll l,ll r,ll now,ll val) {
    if(tree[now].l >= l && tree[now].r <= r) {
        work(now,val);
        return ;
    }
    if(tree[now].lazy) pushdown(now);
    ll mid = (tree[now].l + tree[now].r) >> 1;
    if(mid >= l) modify(l,r,lson,val);
    if(mid < r) modify(l,r,rson,val);
    updata(now);
    return ;
}

void query(ll l,ll r,ll now) {
    if(tree[now].l >= l && tree[now].r <= r)  {
        sum1 += tree[now].sum[1];
        sum2 += tree[now].sum[2];
        sum3 += tree[now].sum[3];
        return ;
    }
    if(tree[now].lazy) pushdown(now);
    ll mid = (tree[now].l + tree[now].r) >> 1;
    if(mid >= l) query(l,r,lson);
    if(mid < r) query(l,r,rson);
    return ;
}

int main()
{   
    ll n,m,l,r,v;
    char s[3];
    n = read();m = read();
    build(1,n,1);
    while(m --) {
        scanf("%s",&s);
        l = read();r = read() - 1;
        if(s[0] == 'C') {
            v = read();
            modify(l,r,1,v);
        }
        else {
            ll a;
            sum1 = sum2 = sum3 = 0;
            query(l,r,1);
            a = (r - l + 1 - r * l) * sum1 + (r + l) * sum2 - sum3;
            ll b = ( r - l + 2 ) * (r - l + 1) / 2;
            ll g = gcd(a,b);
            printf("%lld/%lld\n", a / g,b / g);
        }
    }
    return 0;
}
posted @ 2018-10-04 15:35  Rlif  阅读(202)  评论(0编辑  收藏  举报