请叫我头头哥

Linux安装Kafka

kafka是一个分布式消息队列。具有高性能、持久化、多副本备份、横向扩展能力。生产者往队列里写消息,消费者从队列里取消息进行业务逻辑。一般在架构设计中起到解耦、削峰、异步处理的作用。kafka对外使用topic的概念,生产者往topic里写消息,消费者从读消息。为了做到水平扩展,一个topic实际是由多个partition组成的,遇到瓶颈时,可以通过增加partition的数量来进行横向扩容。单个parition内是保证消息有序。每新写一条消息,kafka就是在对应的文件append写,所以性能非常高。

v基础知识

什么是消息队列(Message Queue)?

消息(Message)

网络中的两台计算机或者两个通讯设备之间传递的数据。例如说:文本、音乐、视频等内容。

队列(Queue)

一种特殊的线性表(数据元素首尾相接),特殊之处在于只允许在首部删除元素和在尾部追加元素。入队、出队。

消息队列(MQ)

消息+队列,保存消息的队列。消息的传输过程中的容器;主要提供生产、消费接口供外部调用做数据的存储和获取。

MQ分类

MQ主要分为两类:点对点(p2p)、发布订阅(Pub/Sub)

共同点:

消息生产者生产消息发送到queue中,然后消息消费者从queue中读取并且消费消息。

不同点:

p2p模型包括:消息队列(Queue)、发送者(Sender)、接收者(Receiver)

一个生产者生产的消息只有一个消费者(Consumer)(即一旦被消费,消息就不在消息队列中)。比如说打电话。

Pub/Sub包含:消息队列(Queue)、主题(Topic)、发布者(Publisher)、订阅者(Subscriber)。每个消息可以有多个消费者,彼此互不影响。比如我发布一个微博:关注我的人都能够看到。

那么在大数据领域呢,为了满足日益增长的数据量,也有一款可以满足百万级别消息的生成和消费,分布式、持久稳定的产品——Kafka。

vKafka概念

在要了解Kafka之前,必须先了解主题,经纪人,生产者和消费者等主要术语。 下图说明了主要术语,表格详细描述了图表组件。如已了解的可以跳过此部分。

Linux安装Kafka

在上图中,主题配置为三个分区。 分区1具有两个偏移因子0和1.分区2具有四个偏移因子0,1,2和3.分区3具有一个偏移因子0.副本的id与承载它的服务器的id相同。

假设,如果主题的复制因子设置为3,那么Kafka将创建每个分区的3个相同的副本,并将它们放在集群中以使其可用于其所有操作。 为了平衡集群中的负载,每个代理都存储一个或多个这些分区。 多个生产者和消费者可以同时发布和检索消息。

Topics(主题):每条发布到Kafka集群的消息都有一个类别,这个类别被称为topic。(物理上不同topic的消息分开存储,逻辑上一个topic的消息虽然保存于一个或多个broker上但用户只需指定消息的topic即可生产或消费数据而不必关心数据存于何处)

Partition(分区):parition是物理上的概念,每个topic包含一个或多个partition,创建topic时可指定parition数量。每个partition对应于一个文件夹,该文件夹下存储该partition的数据和索引文件

Partition offset(分区偏移):每个分区消息具有称为 offset 的唯一序列标识。

Replicas of partition(分区备份):副本只是一个分区的备份。 副本从不读取或写入数据。 它们用于防止数据丢失。

Broker:Kafka集群包含一个或多个服务器,这种服务器被称为broker

Brokers(经纪人):代理是负责维护发布数据的简单系统。 每个代理中的每个主题可以具有零个或多个分区。 假设,如果在一个主题和N个代理中有N个分区,每个代理将有一个分区。假设在一个主题中有N个分区并且多于N个代理(n + m),则第一个N代理将具有一个分区,并且下一个M代理将不具有用于该特定主题的任何分区。假设在一个主题中有N个分区并且小于N个代理(n-m),每个代理将在它们之间具有一个或多个分区共享。 由于代理之间的负载分布不相等,不推荐使用此方案。

Kafka Cluster(Kafka集群):Kafka有多个代理被称为Kafka集群。 可以扩展Kafka集群,无需停机。 这些集群用于管理消息数据的持久性和复制。

Producers(生产者):生产者是发送给一个或多个Kafka主题的消息的发布者。 生产者向Kafka经纪人发送数据。 每当生产者将消息发布给代理时,代理只需将消息附加到最后一个段文件。 实际上,该消息将被附加到分区。 生产者还可以向他们选择的分区发送消息。

Consumers(消费者):消费消息。每个consumer属于一个特定的consumer group(可为每个consumer指定group name,若不指定group name则属于默认的group)。使用consumer high level API时,同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。

Consumer Group(消费者组):是逻辑上的概念,是Kafka实现单播和广播两种消息模型的手段。同一个topic的数据,会广播给不同的group;同一个group中的worker,只有一个worker能拿到这个数据。换句话说,对于同一个topic,每个group都可以拿到同样的所有数据,但是数据进入group后只能被其中的一个worker消费。group内的worker可以使用多线程或多进程来实现,也可以将进程分散在多台机器上,worker的数量通常不超过partition的数量,且二者最好保持整数倍关系,因为Kafka在设计时假定了一个partition只能被一个worker消费(同一group内)。简单的理解就是,实现了队列的方式。同一个groupid 的 consumer 属于一个队列方式,消费了就完事了

Leader(领导者): Leader 是负责给定分区的所有读取和写入的节点。 每个分区都有一个服务器充当Leader.

Follower(追随者):跟随领导者指令的节点被称为Follower。 如果领导失败,一个追随者将自动成为新的领导者。 跟随者作为正常消费者,拉取消息并更新其自己的数据存储。

Kafka的特性:

  • 可靠性:Kafka是分布式,分区,复制和容错的。
  • 可扩展性:Kafka消息传递系统轻松缩放,无需停机。
  • 耐用性/持久性:Kafka使用分布式提交日志,这意味着消息会尽可能快地保留在磁盘上,因此它是持久的。
  • 性能:Kafka对于发布和订阅消息都具有高吞吐量。 即使存储了许多TB的消息,它也保持稳定的性能。
  • 高并发:支持数千个客户端同时读写

使用场景:

  • 指标:Kafka通常用于操作监控数据。 这涉及聚合来自分布式应用程序的统计信息,以产生操作数据的集中馈送。
  • 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
  • 日志聚合解决方案:Kafka可用于跨组织从多个服务收集日志,并使它们以标准格式提供给多个服务器。
  • 消息系统:解耦和生产者和消费者、缓存消息等。
  • 流处理:流行的框架(如Storm和Spark Streaming)从主题中读取数据,对其进行处理,并将处理后的数据写入新主题,供用户和应用程序使用。 Kafka的强耐久性在流处理的上下文中也非常有用。

安装Kafka之前,先确认是否已安装Java和Zookeeper

没有安装Java JDK的朋友可以直接看这里。《CentOS安装Java JDK》

没有安装Zookeeper的朋友可以直接看这里。《安装ZooKeeper》

v安装Kafka

2.1 下载

wget http://mirrors.hust.edu.cn/apache/kafka/2.0.0/kafka_2.12-2.0.0.tgz

如果下载很慢或者不方便,也可以用这里已经下载好的压缩包。链接: https://pan.baidu.com/s/1u8mSfubwZupFqKtK6PH6Qw 提取码: v5em

2.2 解压

tar -xzf kafka_2.12-2.0.0.tgz

注意,kafka_2.12-2.0.0.tgz版本是已经编译好的版本,解压就能使用。

2.3 配置server.properties

默认配置 advertised.listeners=PLAINTEXT://:your.host.name:9092 修改为 advertised.listeners=PLAINTEXT://:ip:9092

ip为服务器ip。

hostname和端口是用来建议给生产者和消费者使用的,如果没有设置,将会使用listeners的配置,如果listeners也没有配置,将使用java.net.InetAddress.getCanonicalHostName()来获取这个hostname和port,对于ipv4,基本就是localhost了。

"PLAINTEXT"表示协议,可选的值有PLAINTEXT和SSL,hostname可以指定IP地址,也可以用"0.0.0.0"表示对所有的网络接口有效,如果hostname为空表示只对默认的网络接口有效。也就是说如果你没有配置advertised.listeners,就使用listeners的配置通告给消息的生产者和消费者,这个过程是在生产者和消费者获取源数据(metadata)。

更多介绍:

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

##################################################################################
#  broker就是一个kafka的部署实例,在一个kafka集群中,每一台kafka都要有一个broker.id
#  并且,该id唯一,且必须为整数
##################################################################################
broker.id=10

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = security_protocol://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

##################################################################################
#The number of threads handling network requests
# 默认处理网络请求的线程个数 3个
##################################################################################
num.network.threads=3
##################################################################################
# The number of threads doing disk I/O
# 执行磁盘IO操作的默认线程个数 8
##################################################################################
num.io.threads=8

##################################################################################
# The send buffer (SO_SNDBUF) used by the socket server
# socket服务使用的进行发送数据的缓冲区大小,默认100kb
##################################################################################
socket.send.buffer.bytes=102400

##################################################################################
# The receive buffer (SO_SNDBUF) used by the socket server
# socket服务使用的进行接受数据的缓冲区大小,默认100kb
##################################################################################
socket.receive.buffer.bytes=102400

##################################################################################
# The maximum size of a request that the socket server will accept (protection against OOM)
# socket服务所能够接受的最大的请求量,防止出现OOM(Out of memory)内存溢出,默认值为:100m
# (应该是socker server所能接受的一个请求的最大大小,默认为100M)
##################################################################################
socket.request.max.bytes=104857600

############################# Log Basics (数据相关部分,kafka的数据称为log)#############################

##################################################################################
# A comma seperated list of directories under which to store log files
# 一个用逗号分隔的目录列表,用于存储kafka接受到的数据
##################################################################################
log.dirs=/home/uplooking/data/kafka

##################################################################################
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
# 每一个topic所对应的log的partition分区数目,默认1个。更多的partition数目会提高消费
# 并行度,但是也会导致在kafka集群中有更多的文件进行传输
# (partition就是分布式存储,相当于是把一份数据分开几份来进行存储,即划分块、划分分区的意思)
##################################################################################
num.partitions=1

##################################################################################
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
# 每一个数据目录用于在启动kafka时恢复数据和在关闭时刷新数据的线程个数。如果kafka数据存储在磁盘阵列中
# 建议此值可以调整更大。
##################################################################################
num.recovery.threads.per.data.dir=1

############################# Log Flush Policy (数据刷新策略)#############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs(平衡) here:
#    1. Durability 持久性: Unflushed data may be lost if you are not using replication.
#    2. Latency 延时性: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput 吞吐量: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# kafka中只有基于消息条数和时间间隔数来制定数据刷新策略,而没有大小的选项,这两个选项可以选择配置一个
# 当然也可以两个都配置,默认情况下两个都配置,配置如下。

# The number of messages to accept before forcing a flush of data to disk
# 消息刷新到磁盘中的消息条数阈值
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
# 消息刷新到磁盘生成一个log数据文件的时间间隔
#log.flush.interval.ms=1000

############################# Log Retention Policy(数据保留策略) #############################

# The following configurations control the disposal(清理) of log segments(分片). The policy can
# be set to delete segments after a period of time, or after a given size has accumulated(累积).
# A segment will be deleted whenever(无论什么时间) *either* of these criteria(标准) are met. Deletion always happens
# from the end of the log.
# 下面的配置用于控制数据片段的清理,只要满足其中一个策略(基于时间或基于大小),分片就会被删除

# The minimum age of a log file to be eligible for deletion
# 基于时间的策略,删除日志数据的时间,默认保存7天
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes. 1G
# 基于大小的策略,1G
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
# 数据分片策略
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies 5分钟
# 每隔多长时间检测数据是否达到删除条件
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=uplooking01:2181,uplooking02:2181,uplooking03:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000

v启动Kafka

3.1 启动ZooKeeper

/usr/local/zookeeper-3.4.13/bin/zkServer.sh start

注意,需要先启动ZooKeeper再启动kafka,不然会报错。如下图:

Linux安装Kafka

3.2 启动kafka

bin/kafka-server-start.sh config/server.properties

Linux安装Kafka

启动Kafka Broker后,在ZooKeeper终端上键入命令 jps,效果如下:

Linux安装Kafka

3.2 停止kafka

bin/kafka-server-stop.sh config/server.properties

vKafka topic

4.1 创建topic

bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic demo

其中demo为创建的topic名称。

Linux安装Kafka

如上图,创建了一个名为 demo 的主题,其中包含一个分区和一个副本因子。 创建成功之后会输出: Created topic "demo".

Linux安装Kafka

如上图,创建主题后,系统会在config / server.properties文件中的"/ tmp / kafka-logs /"中指定的创建主题的日志。

4.2 查询topic列表

bin/kafka-topics.sh --list --zookeeper localhost:2181

4.3 查看topic信息

bin/kafka-topics.sh --zookeeper localhost:2181 --describe --topic demo

4.3 删除topic

bin/kafka-topics.sh --zookeeper localhost:2181 --delete --topic demo

vKafka 生产/消费

5.1 启动生产者

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic demo

从上面的语法,生产者命令行客户端需要两个主要参数 -

代理列表 - 我们要发送邮件的代理列表。 在这种情况下,我们只有一个代理。 Config / server.properties文件包含代理端口ID,因为我们知道我们的代理正在侦听端口9092,因此您可以直接指定它。主题名称:demo。

5.2 启动消费者

为了方便测试,另启一个sheel窗口 这样效果更明显。需要注意的是旧版本和新版本的命令是不一样的

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic demo --from-beginning

报错提示: zookeeper is not a recognized option

发现在启动的时候说使用 --zookeeper是一个过时的方法,最新的版本中命令如下:

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic demo --from-beginning

可以开启两个终端,一个发送消息,一个接受消息。效果如下:

Linux安装Kafka

5.3 查看kafka生产最大位置偏移量

bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list localhost:9092 --topic demo --time -1

vKafka 博客总结

Kafka是一个统一的平台,用于处理所有实时数据Feed。 Kafka支持低延迟消息传递,并在出现机器故障时提供对容错的保证。 它具有处理大量不同消费者的能力。 Kafka非常快,执行2百万写/秒。 Kafka将所有数据保存到磁盘,这实质上意味着所有写入都会进入操作系统(RAM)的页面缓存。 这使得将数据从页面缓存传输到网络套接字非常有效。

本文中部分内容翻译或借鉴于以下学习资料,特别鸣谢:


作  者:请叫我头头哥
出  处:http://www.cnblogs.com/toutou/
关于作者:专注于基础平台的项目开发。如有问题或建议,请多多赐教!
版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。
特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是作者坚持原创和持续写作的最大动力!

posted @ 2019-10-05 22:27  请叫我头头哥  阅读(40453)  评论(1编辑  收藏  举报
//Setting ico for cnblogs