STM32_6(TIM)

TIM定时器(第一部分)

  • TIM(Timer)定时器
  • 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断
  • 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时
  • 不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能
  • 根据复杂度和应用场景分为了高级定时器、通用定时器、基本定时器三种类型

 

定时器类型

 

STM32F103C8T6定时器资源:TIM1、TIM2、TIM3、TIM4

 

定时器结构图

基本定时器

  内部时钟一般为72Mhz, 预分频器就是把时钟频率分频,最高可以65536, 比如预分配器是2,那么时钟频率为24Mhz,计时器等于自动重装载寄存器的时候,就是计时时间到了,那它就会产生中断信号,并且清零计数器,计数器自动开始下一次的计数计时。

有黑色阴影的就是带有影子寄存器的缓冲机制。

 

通用定时器

  先初始化TIM3,然后使用主模式把它的更新事件映射到TRGO上,接着再初始化TIM2,这里选择ITR2,对应的就是TIM3的TRGO,然后后面再选择时钟为外部时钟模式1,这样TIM3的更新事件就可以驱动TIM2的时基单元,也就实现了定时器的级联。

 

高级定时器

原本的通用定时器最高时间为59秒多,现在有了重复计数计数器后,就还需要再乘65536,提升了定时时间。

右边的输出引脚,由原来的一个变为了两个互补的输出,可以输出一对互补的PWM波,这些电路为了驱动三相无刷电机。

DTG寄存器就是高级定时器对输出比较模块的升级。

DTG(Dead Time Generate)死区生成电路:在开关切换的瞬间,由于器件的不理想,造成短暂的直通现象,所以才加入DTG, 在开关切换的瞬间,产生一定时长的死区,让桥臂的上下管全部关断,防止直通现象。

 

定时中断基本结构

 

预分频器时序

计数器计数频率:CK_CNT = CK_PSC / (PSC + 1)

 

计数器时序

计数器溢出频率:CK_CNT_OV = CK_CNT / (ARR + 1)

                    把计数频率带入得   = CK_PSC / (PSC + 1) / (ARR + 1)

 

计时器有/无预装时序

 ARPE就是控制有/无预装,0代表没有,1代表有

 

RCC时钟树

  时钟树,STM32中用来产生和配置时钟,并且把配置好的时钟发送到各个外设的系统,时钟是所有外设运行的基础。

 

输出比较简介(第二部分)

  • OC(Output Compare)输出比较
  • 输出比较可以通过比较CNT与CCR寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形
  • 每个高级定时器和通用定时器都拥有4个输出比较通道
  • 高级定时器的前3个通道额外拥有死区生成和互补输出的功能

 CCR(捕获比较寄存器)

 

PWM

  • PWM(Pulse Width Modulation)脉冲宽度调制
  • 在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来等效地获得所需要的模拟参量,常应用于电机控速等领域
  • PWM参数:频率 = 1 / TS            占空比 = TON / TS           分辨率 = 占空比变化步距

 

 

输出比较通道

通用

高级

 OC1和OC1N是两个互补的输出端口,分别控制上管和下管的导通和关闭。

输出比较模式

 

PWM基本结构

 

参数计算

PWM频率:        Freq = CK_PSC / (PSC + 1) / (ARR + 1)
PWM占空比:    Duty = CCR / (ARR + 1)
PWM分辨率:    Reso = 1 / (ARR + 1)

 

舵机简介

  • 舵机是一种根据输入PWM信号占空比来控制输出角度的装置
  • 输入PWM信号要求:周期为20ms,高电平宽度为0.5ms~2.5ms

 

 

直流电机及驱动简介

  • 直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转
  • 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作
  • TB6612是一款双路H桥型的直流电机驱动芯片,可以驱动两个直流电机并且控制其转速和方向

硬件驱动电路

 

输入捕获简介(第三部分)

  • IC(Input Capture)输入捕获
  • 输入捕获模式下,当通道输入引脚出现指定电平跳变时,当前CNT的值将被锁存到CCR中,可用于测量PWM波形的频率、占空比、脉冲间隔、电平持续时间等参数
  • 每个高级定时器和通用定时器都拥有4个输入捕获通道
  • 可配置为PWMI模式,同时测量频率和占空比
  • 可配合主从触发模式,实现硬件全自动测量
  • 对于输入捕获和输出比较寄存器,只能使用其中一个,不能同时使用

 

频率测量

 

测频法适合测量高频信号、测周法适合测量低频信号

 

主从触发模式

主模式可以将定时器内部的信号,映射到TRGO引脚,用于触发别的外设。

从模式是接收其他外设或者自身外设的一些信号,用于控制自身定时器的运行,也就是被别的信号控制。

触发源选择指定的一个信号得到TRGI,TRGI去触发从模式,从模式可以选择一项操作来自动执行。

 

输入捕获基本结构

 输入捕获一般来捕获频率。

PWMI基本结构

TI1FP1配置上升沿触发,触发捕获和清零CNT,正常捕获周期 ,然后再把TI1FP2配置为下降沿触发,通过交叉通道,去触发通道2的捕获单元。

PWMI一般来捕获频率和占空比。

 

TIM编码器接口(第四部分)

  • Encoder Interface 编码器接口
  • 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度
  • 每个高级定时器和通用定时器都拥有1个编码器接口
  • 两个输入引脚借用了输入捕获的通道1和通道2

编码器测速一般应用在电机控制的项目上,使用PWM驱动电机,再使用编码器测量电机的速度,然后再用PID算法进行闭环控制。

一个编码器有两个输出,一个是A相,一个是B相,然后接入到STM32,定时器的编码器接口,编码器接口自动控制定时器时基单元中的CNT计数器进行自增或自减,比如初始化后,CNT初始化为0,然后编码器右转,CNT++,右转产生一个脉冲,CNT就加一次,比如右转产生10个脉冲后,停下来,那么这个过程CNT就由0自增到10,比如编码器再左转产生5个脉冲,CNT就会在原本的10的基础上自减5。

 

正交编码器

 

 

 

编码器接口基本结构

 

 

 

工作模式

 

正转的状态都向上计数,反转的状态都向下计数。

一般情况下用第三种工作模式。

 

 

举例(均不反向)

 

第一个状态,TI1上升沿,TI2低电平,查询上面表,上升沿并且低电平,就是向上计数,这就是正转。

毛刺展示的就是正交编码器抗噪声原理,TI2没有变化,但是TI1连续跳变,这不符合正交编码器的信号规律,正常情况下是两个输出交替变化。 所以出现了一个引脚不变,另一个引脚连续跳变多次的毛刺信号,计数器就会加减加减来回摆动,实现了抗噪声。

 

举例(TI1反向)

如果使用TIM_ICPolarity_Rising,那么就是均不反向;如果使用TIM_ICPolarity_Falling,那么就是反向

这里的举例是TI1反向,可以根据极性来选择反不反向。

比如我原本想要正速度,但是是负速度,就可以选择这个反向,也可以交换两个引脚,交换极性。

 

代码部分

定时器中断配置代码部分

#include "Timer.h"

extern uint16_t Num;

void Timer_Init(void)
{

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            // 1.时钟使能
    
    TIM_InternalClockConfig(TIM2);                                  // 2.选择时钟模式
    // TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x0F);			// 配置外部时钟2

    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitSturcture;              // 3.TIM初始化
    TIM_TimeBaseInitSturcture.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseInitSturcture.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInitSturcture.TIM_Period = 10000 - 1;
    TIM_TimeBaseInitSturcture.TIM_Prescaler = 7200 - 1;             // 计算公式: 72Mz/(PSC+1)/(ARR+1)
    TIM_TimeBaseInitSturcture.TIM_RepetitionCounter = 0;
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitSturcture);              

    TIM_ClearFlag(TIM2, TIM_FLAG_Update);                           // 手动更新中断标志位清除(因为单片机一上电就会中断,先清楚标志位)
    TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);                      // 4.配置时钟中断

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);                 // 5.设置NVIC优先级分组

    NVIC_InitTypeDef NVIC_InitStructure;                            // 6.配置NVIC
    NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 
    NVIC_Init(&NVIC_InitStructure);

    TIM_Cmd(TIM2, ENABLE);                                          // 7.使能TIM2
}

/* TIM2中断函数(用户自定函数) */
void TIM2_IRQHandler(void)											
{
    if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)				// 检查TIM2中断是否发生
    {
        Num++;

        TIM_ClearITPendingBit(TIM2, TIM_IT_Update);					// 清楚TIM2中断标志位
    }
}

PWM配置代码部分

#include "Bsp_PWM.h"

void PWM_Init(void)
{

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);            // 1.TIM2时钟使能
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);           // 2.GPIOA时钟使能
    
    // RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			// 重映射设置
    // GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);        // 重新映射TIM2
    // GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);     // 如果需要使用重映射,但它是一个调试接口,则需要同时编写这两个接口。

    GPIO_InitTypeDef GPIO_InitStructure;                            // 3.配置GPIO
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);                          

    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;              // 4.配置TIM
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                 // ARR值(重装载值)    
    TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;              // PSC(预分频系数)
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);

    TIM_OCInitTypeDef TIM_OCInitStructure;                          // 5.TIM输出比较通道初始化
    TIM_OCStructInit(&TIM_OCInitStructure);                         // 结构指定初始值
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 90;                             // CCR(捕获/比较寄存器)
    TIM_OC1Init(TIM2, &TIM_OCInitStructure);

    TIM_Cmd(TIM2, ENABLE);                                          // 6.TIM2使能

}

void PWM_SetCompare1(uint16_t Compare)
{
    TIM_SetCompare1(TIM2, Compare);									// 设置TIM2 Capture Compare1寄存器值
}

 

输入捕获配置代码部分

#include "IC.h"

void IC_Init(void)
{

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);               // 1.开启时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

    GPIO_InitTypeDef GPIO_InitStructure;                                // 2.GPIO配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    TIM_InternalClockConfig(TIM3);                                      // 3.选择时钟模式

    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;                  // 4.时基单元配置
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;
    TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);
    

    TIM_ICInitTypeDef TIM_ICInitStructure;                              // 5.输入捕获配置
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
    TIM_ICInitStructure.TIM_ICFilter = 0xF;
    TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
    TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
    TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
    TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);

    TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);                        // 6.触发源选择

    TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);                     // 7.配置从模式

    TIM_Cmd(TIM3, ENABLE);                                              // 8.开启TIM3时钟
}


uint32_t IC_GetFreq(void)
{
    return 1000000 / (TIM_GetCapture1(TIM3) + 1);						// fx = fc / N   			fc=72M/(PSC+1)=1M		N(读取CCR的值)
}

uint32_t IC_GetDuty(void)
{
    return (TIM_GetCapture2(TIM3) + 1) * 100 / (TIM_GetCapture1(TIM3) + 1);		// Duty = CCR2 / CCR1  因为要显示整数,乘100。返回的值范围为0~100,对应占空比为0%~100%
}

 

编码器配置代码部分

#include "Bsp_EncoderSpeed.h"

void EncoderSpeed_Init(void)
{

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);							// 1.开启GPIOA时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);							// 2.开启TIM3时钟

    GPIO_InitTypeDef GPIO_InitStructure;											// 3.GPIO配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;									// 上拉输入
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    TIM_InternalClockConfig(TIM3);													// 4.时钟模式选择(这里选择内部时钟)
    
    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;								// 5.TIM0配置
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;						// 分频系数
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;					// 计数模式
    TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;
    TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;							// 重复计数次数(当设为1时,需要进入2次中断,中断代码才生效)
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);

    TIM_ICInitTypeDef TIM_ICInitStructure;											// 6.输入捕获配置
    TIM_ICStructInit(&TIM_ICInitStructure);
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;								// TIM频道1
    TIM_ICInitStructure.TIM_ICFilter = 0xF;											// 输入捕获滤波器
    TIM_ICInit(TIM3, &TIM_ICInitStructure);
    TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
    TIM_ICInit(TIM3, &TIM_ICInitStructure);


    TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);   // 7.编码器配置库函数

    TIM_Cmd(TIM3, ENABLE);															// 8.使能TIM3		

}

/* 获得编码器速度 */
int16_t Encoder_GetSpeed(void)
{
    int16_t Temp;
    Temp = TIM_GetCounter(TIM3);
    TIM_SetCounter(TIM3, 0);
    return Temp;
}

/* 获得编码器的CNT */
int16_t Encoder_GetCNT(void)
{
    return TIM_GetCounter(TIM3);
}

不知道为什么我注释代码在VS code里面时排列整齐,到这就不整齐了,逼死强迫症患者。

本文作者:烟儿公主

本文链接:https://www.cnblogs.com/toutiegongzhu/p/17367845.html

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   烟儿公主  阅读(467)  评论(2编辑  收藏  举报
点击右上角即可分享
微信分享提示
💬
评论
📌
收藏
💗
关注
👍
推荐
🚀
回顶
收起
  1. 1 夏日大冒险 暴躁的兔子
夏日大冒险 - 暴躁的兔子
00:00 / 00:00
An audio error has occurred.

作词 : 暴躁的兔子

作曲 : 暴躁的兔子

编曲 : IOF

混音:Gfanfan

出品:网易飓风

夏天 不要再浪费时间

实现 你承诺过的改变

别再 找一堆借口拖延

现在就和我一起飞向海边

人生苦短 你应该学会如何作乐

低着头还怎么应对挫折

人应该为自己活着

不用去迎合

要去寻欢作乐

撮合我的浪漫和悲欢

把这荒诞人生都塞满

生活难免磕磕绊绊

对抗生活的平庸就是浪漫

学会取悦自己逆风翻盘

去反抗变态的三观

把条条框框都砸烂

建立新的规则推翻谈判

无可救药的人呐

和我一起去海边

看那日出和晚霞 海天一线

看阳光穿越地平线

现实交织的明天

就在这个夏天

为自己改变

别怕山高路远

去冒险

我真的不care你是否会喜欢我

不跟风被定义的美 全都是灾祸

我才不讨好大多数绝不与示弱

过好你的生活

你管我应该怎么快活

没有人能有资格审判

别人的生活和牵绊

快闭上你的高谈阔论

乘风破浪吧 理想的风帆

我就是肆意张扬又如何

我就是锋芒毕露又如何

我就是离经叛道又如何

我就是要出格 你管我要如何

我就是与众不同又如何

我就是特立独行又如何

我就是不知好歹又如何

你管我怎样出格 你管我如何

无可救药的人呐

和我一起去海边

看那日出和晚霞 海天一线

看阳光穿越地平线

现实交织的明天

就在这个夏天

为自己改变

别怕山高路远

不知进退的人呐

和我一起去海边

聊聊曾经的理想 一起想当年

那曾想改变世界的人

是否还满腔热忱

不羁的我们放肆着

反抗那命运的指针

解放灵魂

推广:网易飓风

企划:贾焱祺

监制:徐思灵

出品人:谢奇笛