复杂查询
复杂查询及查询值输出
基于 Query 的 subquery
with get_session() as session:
# <class 'sqlalchemy.orm.query.Query'>
query = (session
.query(User.id)
.filter(User.username == "asd")
.filter_by(user)
.limit(10)
)
subquery = query.subquery()
query2 = session.query(User).filter(
User.id.in_(subquery)
)
print query2#<-打印展开成的SQL,此处没有SQL查询
SQLAlchemy and or 查询方式范例:
逻辑查询
AND:
# use and_()
from sqlalchemy import and_
query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones'))
# or send multiple expressions to .filter()
query.filter(User.name == 'ed', User.fullname == 'Ed Jones')
# or chain multiple filter()/filter_by() calls
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')
OR:
from sqlalchemy import or_
query.filter(or_(User.name == 'ed', User.name == 'wendy'))
MATCH:
query.filter(User.name.match('wendy'))
理解了 Query、Column 的概念,也很容易自行构造出这样的 SQL
所有在 Column 级别上的使用 详见 Column API 文档
限定时间范围的查询
#模型
class User(Base):
...
birthday = Column(Date, index=True) #in database it's like '1987-01-17'
...
查询指定日期范围出生的
qry = DBSession.query(User).filter(
and_(User.birthday <= '2022-01-17', User.birthday >= '1985-01-17'))
# or same:
qry = DBSession.query(User).filter(User.birthday <= '2022-01-17').\
filter(User.birthday >= '1985-01-17')
或者
qry = DBSession.query(User).filter(User.birthday.between('1985-01-17', '2022-01-17'))#推荐
近期和之前数据
from datetime import datetime, timedelta
NOW = datetime.now()
#最近一周数据
macroEconomyTable = Scrapy.query.filter(Scrapy.date >= NOW - timedelta(days=7)).all()
#最近1天数据
macroEconomyTable = Scrapy.query.filter(Scrapy.date >= NOW - timedelta(days=1)).all()
#最近12小时
macroEconomyTable = Scrapy.query.filter(Scrapy.date >= NOW - timedelta(hours=12)).all()
#最近半小时
macroEconomyTable = Scrapy.query.filter(Scrapy.date >= NOW - timedelta(seconds=30)).all()
#1天之前
macroEconomyTable = Scrapy.query.filter(Scrapy.date <= NOW - timedelta(days=1)).all()
#12小时之前
macroEconomyTable = Scrapy.query.filter(Scrapy.date <= NOW - timedelta(hours=12)).all()
我最中意的:
- 方法1
from datetime import date, timedelta
from flask import jsonify
from app import db, ma
from app.models import User
from . import main
class UserSchema(ma.Schema):
class Meta:
fields = ('forename', 'surname', 'birthday', ...)
@main.route('/', methods=('GET',))
def get_users():
start_range = date.today() + timedelta(years=-30)
end_range = date.today() + timedelta(years=-18)
users = db.session.query(User).filter(User.birthday.between(start_range, end_range)).all()
users_schema = UserSchema(many=True)
return jsonify(users_schema.dump(users))
- 方法2
from app import SQLAlchemyDB as db
Chance.query.filter(Chance.repo_id==repo_id,
Chance.status=="1",
db.func.date(Chance.apply_time)<=end,
db.func.date(Chance.apply_time)>=start).count()
```
等价sql语句
select
count(id)
from
Chance
where
repo_id=:repo_id
and status='1'
and date(apple_time) <= end
and date(apple_time) >= start
```
SQLAlchemy ORM查询结果转换为Pandas DataFrame输出
df = pd.read_sql(query.statement, query.session.bind)
#query为具体查询 query.session.bind绑定对应数据表
实例:
import pandas as pd
logtables = pd.read_sql(
self.user_log_sql_session.query(Logs).filter(Logs.create_time >= NOW - timedelta(days=6)).statement,
self.user_log_sql_session.bind)
print(logtables[:][:])
#self.user_log_sql_session这是我自定义的一个获取session的变量
本文来自博客园,作者:KMP,转载请注明原文链接:https://www.cnblogs.com/touchTomorrow/p/16300658.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步