05 2015 档案
摘要:[问题2015S12] 设 \(A\) 为 \(n\) 阶实矩阵, 若对任意的非零 \(n\) 维实列向量 \(\alpha\), 总有 \(\alpha'A\alpha>0\), 则称 \(A\) 为亚正定阵. 显然, 如果 \(A\) 既是实对称阵, 又是亚正定阵, 那么 \(A\) 就是正定阵
阅读全文
摘要:[问题2015S11] 证明: 任一复方阵都相似于一个复对称阵. 举例说明: 存在实方阵, 它不相似于实对称阵.
阅读全文
摘要:[问题2015S10] 设 \(A\) 为 \(n\) 阶实方阵, 证明: 存在 \(n\) 阶非异实对称阵 \(R\), 使得 \(A'=R^{-1}AR\), 即 \(A\) 可通过非异实对称阵相似于其转置 \(A'\).
阅读全文
摘要:[问题2015S09] 设 \(A,B\) 是 \(n\) 阶复矩阵, 满足 \(\mathrm{rank}(AB-BA)\leq 1\), 证明: \(A,B\) 可同时上三角化.
阅读全文