摘要:
前言: 这节主要是练习下PCA,PCA Whitening以及ZCA Whitening在2D数据上的使用,2D的数据集是45个数据点,每个数据点是2维的。参考的资料是:Exercise:PCA in 2D。结合前面的博文Deep learning:十(PCA和whitening)理论知识,来进一步理解PCA和Whitening的作用。 matlab某些函数: scatter: scatter(X,Y,,,’’); – 点的大小控制,设为和X,Y同长度一维向量,则值决定点的大小;设为常数或缺省,则所有点大小统一。 – 点的颜色控制,设为和X,Y同长度一维向量,则色彩由值大小...
阅读全文
posted @ 2013-03-21 16:07
tornadomeet
阅读(15543)
推荐(2)
编辑
摘要:
PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化。 PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小。另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待。 在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值。但是比较奇怪的是,在对自然图像进行均值处理时并不是不是减去该维的平均值,而是减去这张图片本身的平均值。因为PCA的预处理是按照不同应用...
阅读全文
posted @ 2013-03-21 13:34
tornadomeet
阅读(25427)
推荐(2)
编辑