摘要:
前言: 这次的内容是Ng关于machine learning关于svm部分的一些笔记。以前也学过一些svm理论,并且用过libsvm,不过这次一听Ng的内容,确实收获不少,隐约可以看到从logistic model到svm model的过程。 基础内容: 使用linear模型进行分类时,可以将参数向量看成一个变量,如果代价函数用MSE表示,则代价函数的图形类似抛物线(以新的变量为自变量);如果代价函数用交叉对数公式表示时,则其代价函数曲线如下: 在Logistic回归中其代价函数可以表示为如下: 其中第一项是训练样本的误差,第二项是权值系数的惩罚项,λ为权值惩罚系数,其中... 阅读全文