迅为RK3588在 Linux 系统中使用 NPU

 

下载 rknpu2 并拷贝到虚拟机 Ubuntu,RKNPU2 提供了访问 rk3588 芯片 NPU的高级接口。

下载地址为“iTOP-3588 开发板\02_【iTOP-RK3588 开发板】开发资料\12_NPU 使用配套资料\01_rknpu2 工具” 对于 RK3588 来说,Linux 平台 RKNN SDK 库文件为 librknnrt.so RK3588 平台 RKNN SDK 包含了 API 使用示例程序、NPU 运行库、服务程序、文档。

 

 

 

 

服务程序称为 rknn_server,是在开发板上常驻的服务进程,用于连板推理。在 RKNN SDK 中提供了 Linux 平台的 MobileNet 图像分类、SSD 目标检测、YOLOv5 目标检测示例。这些Demo 能够为客户基于 RKNN SDK 开发自己的 AI 应用提供参考。

 

rknpu2/examples 中还有很多其他例子,下面以 rknpu2/examples 下的 rknn_yolov5_demo RK3588 Linux 64 位平台(buildroot 系统)上运行为例,来讲解如何快速上手运行。整体思路分为三步:

1 在虚拟机Ubuntu20.04上交叉编译 demo程序 rknn_yolov5_demo(demo已经默认是rknn 无需进行模型转换)

2 部署到 iTOP-RK3588 开发板

3 在开发板上运行 demo

 

 

设置交叉编译器

 

1 安装 gcc 交叉编译器,编译器下载地址是网盘资料“iTOP-3588 开发板\02_【

iTOP-RK3588 开发板】开发资料\12_NPU 使用配套资料\03_编译所需工具\Linux”

拷贝 gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu.tar.gz Ubuntu 的/opt/tool_chain 目录下,这里拷贝的路径要和作者保持一致,后面要用到交叉编译器的绝对路径。

 

2 解压交叉编译器压缩包

tar -vxf gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu.tar.gz 解压完成后备用!

 

 

修改编译工具路径

1 因为此章节以 rknn_yolov5_demo RK3588 Linux 64 位平台上运行为例,所以修改

examples/rknn_yolov5_demo/build-XXX.sh 的编译工具路径,

2 修改 build-linux_RK3588.sh 文件,将 TOOL_CHAIN 修改为

gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu 的解压路径并保存修改文件,

TOOL_CHAIN=/opt/tool_chain/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu

GCC_COMPILER=$TOOL_CHAIN/bin/aarch64-none-linux-gnu

 

更新 RKNN 模型

RKNN Rockchip NPU 平台(也就是开发板)使用的模型类型,是以.rknn 结尾的模型文件。

RKNN SDK demo RKNN RKNN SDK

examples/rknn_yolov5_demo/model/RK3588/目录下,

如使用自己的模型需要转换成 rknn 模型,转换方法可以参考第 5 章节。

在得到 RKNN 模型之后,demo 程序使用 C 接口在 RK3588 平台开发应用,

3.1.4 编译 demo

1 在终端命令窗口进入 rknn_yolov5_demo 文件夹,输入以下命令:

cd examples/rknn_yolov5_demo/

2 运行 build-linux_RK3588.sh 脚本编译程序

./build-linux_RK3588.sh

3 编译完成之后,编译好的程序一般放在 install 目录

4 Demo “iTOP-3588 \02_ 【iTOP-RK3588 开发板】开发资料\12_NPU 使用配套资料\02_NPU demo\Linux”下载。

 

开发板运行 demo

1 通过 U 盘拷贝 RKNPU2 工具中的 runtime/RK3588/Linux/librknn_api/aarch64/目录下的文件到开发板的/usr/lib 目录下。

 

2 把编译好的程序 rknn_yolov5_demo_Linux 通过 U 盘拷贝到开发板的根目录上,开发板上要 烧写 linux 系统(buildroot)。

3 设置库文件的路径,输入以下命令:

export LD_LIBRARY_PATH=./lib

4 进入程序所在的目录,输入以下命令:

cd /rknn_yolov5_demo_Linux

5 运行程序来识别相应的图片中物体,输入以下命令:

./rknn_yolov5_demo ./model/RK3588/yolov5s-640-640.rknn ./model/bus.jpg

6 运行完生成结果图片 out.jpg

7 拷贝生成的 out.jpg U 盘中,

8 windows 下查看 out.jpg,

 

 

posted on   topeet  阅读(547)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
历史上的今天:
2022-09-08 迅为RK3588开发板国产瑞芯微适用于ARM PC边缘计算NVR等服务器级板卡
2020-09-08 iTOP-iMX6ULL 开发板-FFmpeg 移植实现视频采集

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示