QQ验证码识别源代码(C#/NET1.1)
notsamenum++;
}
}
if(notsamenum<4)
{
char cj=(char)datachar[ii];
return cj.ToString();
}
}
return jieguo;
}
/// <summary>
/// 检查特征库中是否已经存在相关记录
/// </summary>
bool ischardatain()
{
bool jieguo=false;
for(int ii=0;ii<datanum;ii++)
{
//统计一共有多少行的像素有差异,如果在4行以内就认为是存在该记录
// 这种方法比较原始,但比较适合多线程时的运行,因为程序只进行简单的逻辑比较
//如果能够收集更多的特征库,识别率可以达到80%以上
//(此 时可能需要将特征库的容量提高到15W个或以上)
//当然也可以改进品配算法(如使用关键点品配),以用较少的特征库达到较高的识别率,但
// 那样有比较大的机会造成识别错误并且多线程时占用较多CPU时间。
int notsamenum=0;
if(System.Math.Abs(dataxy[ii,0]-xlpic)>1 || System.Math.Abs(dataxy[ii,1]-ylpic)>1)
{
continue;
}
for(int jj=0;jj<20;jj++)
{
if(datap[ii,jj]!=datapic[jj])
{
notsamenum++;
}
}
if(notsamenum<4)
{
string asdasd=((char)datachar[ii]).ToString();
return true;
}
}
return jieguo;
}
/// <summary>
/// 添加到特征库中,并暂时将对应的字符置为空格以待人工识别
/// </summary>
void adddatawithnullchar()
{
if(this.ischardatain())
{
return;
}
for(int ii=0;ii<20;ii++)
{
datap[datanum,ii]=this.datapic[ii];
}
// 暂时将对应的字符置为空格以待人工识别
datachar[datanum]=32;
dataxy[datanum,0]=this.xlpic;
dataxy[datanum,1]=this.ylpic;
datanum++;
}
/// <summary>
/// 检查验证码图片是否能分成4个部分,如果可以就检查4个字符在特征库中是否已经存在,如果不存在,
/// 就添加到特征库中,并暂时将对应的字符置为空格以待人工识别
/// </summary>
public void writetodata()
{
bool[,] picpixel=new bool[49,20];
for(int ii=0;ii<49;ii++)
{
for(int jj=0;jj<20;jj++)
{
if(bp.GetPixel(ii,jj).GetBrightness()<0.999)
{
picpixel[ii,jj]=true;
}
}
}
int[] index=new int[8];
int indexnum=0;
bool black=false;
for(int ii=0;ii<49;ii++)
{
bool haveblack=false;
for(int jj=0;jj<20;jj++)
{
if(picpixel[ii,jj])
{
haveblack=true;
break;
}
}
if(haveblack && black==false)
{
index[indexnum]=ii;
indexnum++;
black=true;
}
if(!haveblack && black)
{
index[indexnum]=ii;
indexnum++;
black=false;
}
}
if(indexnum<7)
{
return;
}
if(indexnum==7)
{
index[7]=49;
}
//****
for(int ii=0;ii<4;ii++)
{
int x1=index[ii*2];
int x2=index[ii*2+1];
int y1=0,y2=19;
bool mb=false;
for(int jj=0;jj<20;jj++)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y1=jj;
break;
}
}
mb=false;
for(int jj=19;jj>=0;jj--)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y2=jj;
break;
}
}
//** 以上是获取有效区域的范围
for(int jj=0;jj<20;jj++)
{
this.datapic[jj]=0;
this.datapic[jj]=0;
}
this.xlpic=(byte)(x2-x1);
// 如果字符宽度超过16个像素就不予处理
if(xlpic>16)
{
continue;
}
this.ylpic=(byte)(y2-y1+1);
int ys=-1;
ushort[] addin=new ushort[]{1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
for(int jj=y1;jj<=y2;jj++)
{
ys++;
int xs=-1;
for(int kk=x1;kk<x2;kk++)
{
xs++;
if(picpixel[kk,jj])
{
this.datapic[ys]=(ushort)(this.datapic[ys]+addin[xs]);
}
}
}
this.adddatawithnullchar();
}
//****
}
/// <summary>
/// 识别图片
/// </summary>
/// <returns>返回识别结果(如果返回的字符串长度小于4就说明识别失败)</returns>
public string ocrpic()
{
string jieguo="";
bool[,] picpixel=new bool[49,20];
for(int ii=0;ii<49;ii++)
{
for(int jj=0;jj<20;jj++)
{
if(bp.GetPixel(ii,jj).GetBrightness()<0.999)
{
picpixel[ii,jj]=true;
}
}
}
int[] index=new int[8];
int indexnum=0;
bool black=false;
for(int ii=0;ii<49;ii++)
{
bool haveblack=false;
for(int jj=0;jj<20;jj++)
{
if(picpixel[ii,jj])
{
haveblack=true;
break;
}
}
if(haveblack && black==false)
{
index[indexnum]=ii;
indexnum++;
black=true;
}
if(!haveblack && black)
{
index[indexnum]=ii;
indexnum++;
black=false;
}
}
if(indexnum<7)
{
return jieguo;
}
if(indexnum==7)
{
index[7]=49;
}
//****
for(int ii=0;ii<4;ii++)
{
int x1=index[ii*2];
int x2=index[ii*2+1];
int y1=0,y2=19;
bool mb=false;
for(int jj=0;jj<20;jj++)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y1=jj;
break;
}
}
mb=false;
for(int jj=19;jj>=0;jj--)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y2=jj;
break;
}
}
//** 以上是获取有效区域的范围
for(int jj=0;jj<20;jj++)
{
this.datapic[jj]=0;
this.datapic[jj]=0;
}
this.xlpic=(byte)(x2-x1);
// 如果字符宽度超过16个像素就不予处理
if(xlpic>16)
{
continue;
}
this.ylpic=(byte)(y2-y1+1);
int ys=-1;
ushort[] addin=new ushort[]{1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
for(int jj=y1;jj<=y2;jj++)
{
ys++;
int xs=-1;
for(int kk=x1;kk<x2;kk++)
{
xs++;
if(picpixel[kk,jj])
{
this.datapic[ys]=(ushort)(this.datapic[ys]+addin[xs]);
}
}
}
jieguo=jieguo+this.getchar();
}
return jieguo;
}
}
}
}
}
if(notsamenum<4)
{
char cj=(char)datachar[ii];
return cj.ToString();
}
}
return jieguo;
}
/// <summary>
/// 检查特征库中是否已经存在相关记录
/// </summary>
bool ischardatain()
{
bool jieguo=false;
for(int ii=0;ii<datanum;ii++)
{
//统计一共有多少行的像素有差异,如果在4行以内就认为是存在该记录
// 这种方法比较原始,但比较适合多线程时的运行,因为程序只进行简单的逻辑比较
//如果能够收集更多的特征库,识别率可以达到80%以上
//(此 时可能需要将特征库的容量提高到15W个或以上)
//当然也可以改进品配算法(如使用关键点品配),以用较少的特征库达到较高的识别率,但
// 那样有比较大的机会造成识别错误并且多线程时占用较多CPU时间。
int notsamenum=0;
if(System.Math.Abs(dataxy[ii,0]-xlpic)>1 || System.Math.Abs(dataxy[ii,1]-ylpic)>1)
{
continue;
}
for(int jj=0;jj<20;jj++)
{
if(datap[ii,jj]!=datapic[jj])
{
notsamenum++;
}
}
if(notsamenum<4)
{
string asdasd=((char)datachar[ii]).ToString();
return true;
}
}
return jieguo;
}
/// <summary>
/// 添加到特征库中,并暂时将对应的字符置为空格以待人工识别
/// </summary>
void adddatawithnullchar()
{
if(this.ischardatain())
{
return;
}
for(int ii=0;ii<20;ii++)
{
datap[datanum,ii]=this.datapic[ii];
}
// 暂时将对应的字符置为空格以待人工识别
datachar[datanum]=32;
dataxy[datanum,0]=this.xlpic;
dataxy[datanum,1]=this.ylpic;
datanum++;
}
/// <summary>
/// 检查验证码图片是否能分成4个部分,如果可以就检查4个字符在特征库中是否已经存在,如果不存在,
/// 就添加到特征库中,并暂时将对应的字符置为空格以待人工识别
/// </summary>
public void writetodata()
{
bool[,] picpixel=new bool[49,20];
for(int ii=0;ii<49;ii++)
{
for(int jj=0;jj<20;jj++)
{
if(bp.GetPixel(ii,jj).GetBrightness()<0.999)
{
picpixel[ii,jj]=true;
}
}
}
int[] index=new int[8];
int indexnum=0;
bool black=false;
for(int ii=0;ii<49;ii++)
{
bool haveblack=false;
for(int jj=0;jj<20;jj++)
{
if(picpixel[ii,jj])
{
haveblack=true;
break;
}
}
if(haveblack && black==false)
{
index[indexnum]=ii;
indexnum++;
black=true;
}
if(!haveblack && black)
{
index[indexnum]=ii;
indexnum++;
black=false;
}
}
if(indexnum<7)
{
return;
}
if(indexnum==7)
{
index[7]=49;
}
//****
for(int ii=0;ii<4;ii++)
{
int x1=index[ii*2];
int x2=index[ii*2+1];
int y1=0,y2=19;
bool mb=false;
for(int jj=0;jj<20;jj++)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y1=jj;
break;
}
}
mb=false;
for(int jj=19;jj>=0;jj--)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y2=jj;
break;
}
}
//** 以上是获取有效区域的范围
for(int jj=0;jj<20;jj++)
{
this.datapic[jj]=0;
this.datapic[jj]=0;
}
this.xlpic=(byte)(x2-x1);
// 如果字符宽度超过16个像素就不予处理
if(xlpic>16)
{
continue;
}
this.ylpic=(byte)(y2-y1+1);
int ys=-1;
ushort[] addin=new ushort[]{1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
for(int jj=y1;jj<=y2;jj++)
{
ys++;
int xs=-1;
for(int kk=x1;kk<x2;kk++)
{
xs++;
if(picpixel[kk,jj])
{
this.datapic[ys]=(ushort)(this.datapic[ys]+addin[xs]);
}
}
}
this.adddatawithnullchar();
}
//****
}
/// <summary>
/// 识别图片
/// </summary>
/// <returns>返回识别结果(如果返回的字符串长度小于4就说明识别失败)</returns>
public string ocrpic()
{
string jieguo="";
bool[,] picpixel=new bool[49,20];
for(int ii=0;ii<49;ii++)
{
for(int jj=0;jj<20;jj++)
{
if(bp.GetPixel(ii,jj).GetBrightness()<0.999)
{
picpixel[ii,jj]=true;
}
}
}
int[] index=new int[8];
int indexnum=0;
bool black=false;
for(int ii=0;ii<49;ii++)
{
bool haveblack=false;
for(int jj=0;jj<20;jj++)
{
if(picpixel[ii,jj])
{
haveblack=true;
break;
}
}
if(haveblack && black==false)
{
index[indexnum]=ii;
indexnum++;
black=true;
}
if(!haveblack && black)
{
index[indexnum]=ii;
indexnum++;
black=false;
}
}
if(indexnum<7)
{
return jieguo;
}
if(indexnum==7)
{
index[7]=49;
}
//****
for(int ii=0;ii<4;ii++)
{
int x1=index[ii*2];
int x2=index[ii*2+1];
int y1=0,y2=19;
bool mb=false;
for(int jj=0;jj<20;jj++)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y1=jj;
break;
}
}
mb=false;
for(int jj=19;jj>=0;jj--)
{
for(int kk=x1;kk<x2;kk++)
{
if(picpixel[kk,jj])
{
mb=true;
break;
}
}
if(mb)
{
y2=jj;
break;
}
}
//** 以上是获取有效区域的范围
for(int jj=0;jj<20;jj++)
{
this.datapic[jj]=0;
this.datapic[jj]=0;
}
this.xlpic=(byte)(x2-x1);
// 如果字符宽度超过16个像素就不予处理
if(xlpic>16)
{
continue;
}
this.ylpic=(byte)(y2-y1+1);
int ys=-1;
ushort[] addin=new ushort[]{1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
for(int jj=y1;jj<=y2;jj++)
{
ys++;
int xs=-1;
for(int kk=x1;kk<x2;kk++)
{
xs++;
if(picpixel[kk,jj])
{
this.datapic[ys]=(ushort)(this.datapic[ys]+addin[xs]);
}
}
}
jieguo=jieguo+this.getchar();
}
return jieguo;
}
}
}