数据结构——二叉查找树、AVL树
二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列!
插入:直接插入,插入后一定为根节点
查找:直接查找
删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父节点即可,有两个孩子的节点,将左儿子最右边节点(或右儿子最左边节点)替换到根节点即可。
AVL树(二叉平衡查找树)
定义:节点的平衡度(左子树的高度 - 右子树的高度)只能为-1、0、1的二叉查找树。
创建:需要一个变量记录每个节点的平衡度
查找:直接查找
插入:LL、LR、RL、RR过程
删除:分情况讨论
AVL树的Java实现:
package com.tonyluis; /** * AVL树 * * @author TonyLuis 2016.07.27 * @param <T> */ public class AVLTree<T extends Comparable<T>> { private AVLNode<T> root; @SuppressWarnings("hiding") class AVLNode<T> { T val; AVLNode<T> left; AVLNode<T> right; int height; AVLNode(T val, AVLNode<T> left, AVLNode<T> right) { this.val = val; this.left = left; this.right = right; this.height = 0; } } public void insert(T num) { root = insert(num, root); } public void remove(T num) { remove(num, root); } public boolean find(T num) { AVLNode<T> t = this.root; while (t != null && num.compareTo(t.val) != 0) t = num.compareTo(t.val) > 0 ? t.right : t.left; if (t == null) return false; else return true; } private int height(AVLNode<T> node) { return node == null ? -1 : node.height; } private AVLNode<T> insert(T num, AVLNode<T> root) { // root==null 找到了插入的位置 if (root == null) return new AVLNode<T>(num, null, null); int compareResult = num.compareTo(root.val); if (compareResult < 0) {// 插入左子树 root.left = insert(num, root.left); if (height(root.left) - height(root.right) == 2) { if (num.compareTo(root.left.val) < 0) root = LL(root); else root = LR(root); } } else if (compareResult > 0) { root.right = insert(num, root.right); if (height(root.right) - height(root.left) == 2) { if (num.compareTo(root.right.val) < 0) root = RL(root); else root = RR(root); } } root.height = Math.max(height(root.left), height(root.right)) + 1; return root; } public boolean remove(T num, AVLNode<T> root) { boolean isStop = false; boolean isLeftSubTree; if (root == null) return true; int compareResult = num.compareTo(root.val); if (compareResult < 0) { isStop = remove(num, root.left); isLeftSubTree = true; } else if (compareResult > 0) { isStop = remove(num, root.right); isLeftSubTree = false; } else if (root.left == null || root.right == null) { root = root.left == null ? root.right : root.left; return false; } else {// 找到且有两个子树,将其和右子树最左边节点交换,然后在右子树执行删除操作 AVLNode<T> tmp = root.right; while (tmp.left != null) tmp = tmp.left; root.val = tmp.val; isStop = remove(root.val, root.right); isLeftSubTree = false; } if (isStop) return true; int bf;// 删除前的root的平衡因子 if (isLeftSubTree) { bf = height(root.left) - height(root.right) + 1; if (bf == 0) return true; else if (bf == 1) return false; else if (bf == -1) { int bfr = height(root.right.left) - height(root.right.left); switch (bfr) { case 0: RR(root); return true; case -1: RR(root); return false; default: RL(root); return false; } } } else { bf = height(root.left) - height(root.right) - 1; if (bf == 0) return true; else if (bf == -1) return false; else if (bf == 1) { int bfr = height(root.right.left) - height(root.right.left); switch (bfr) { case 0: LL(root); return true; case 1: LL(root); return false; default: LR(root); return false; } } } return false; } private AVLNode<T> LL(AVLNode<T> node) { AVLNode<T> nodeLeft = node.left; node.left = nodeLeft.right; nodeLeft.right = node; node.height = Math.max(height(node.left), height(node.right)) + 1; nodeLeft.height = Math.max(height(nodeLeft.left), node.height) + 1; return nodeLeft; } private AVLNode<T> RR(AVLNode<T> node) { AVLNode<T> nodeRight = node.right; node.right = nodeRight.left; nodeRight.left = node; node.height = Math.max(height(node.left), height(node.right)) + 1; nodeRight.height = Math.max(height(nodeRight.right), node.height) + 1; return nodeRight; } private AVLNode<T> LR(AVLNode<T> node) { node.left = RR(node.left); return LL(node); } private AVLNode<T> RL(AVLNode<T> node) { node.right = LL(node.right); return RR(node); } }