C#里的一些加密解密标准函数示例——DES,SHA1,RSA

  最近收到了很多朋友的来信说希望提供DES的C#代码,但是我个人认为,.NET 提供了很多标准函数,没有必要自己写,所以我也只发布了C++的代码,如果大家一定要熟悉加密过程的话,也可以自己动手实现整个过程,这个可以参考我博客 里的DES 算法介绍,和yxyDES2 Class的代码,代码注释相当的清楚。

  .NET 提供了很多标准加密、解密函数,我简要介绍一下DES,SHA1,RSA的标准函数的使用。如果你想做一个网络安全模块,只需将三种算法结合起来设计一个模型,我相信可以实现很多复杂的功能。
  示例本身并不复杂,我也不做过多解释,我也学Linus Torvalds一样吼一句:"Read the f**ing code”,哈哈,开个玩笑,我相信大家肯定能看懂。
 
注:以下示例需引用命名空间 : using System.Security.Cryptography;
 
一. DES 加密、解密
   我相信一下注释相当清楚了,加上我博客里关于DES的文章确实不少,所以DES不做任何解释,怎么调用就更不用解释了吧,呵呵:
        //默认密钥向量
        private byte[] Keys = { 0xEF0xAB0x560x780x900x340xCD0x12 };
        
/// <summary>
        
/// DES加密字符串
        
/// </summary>
        
/// <param name="encryptString">待加密的字符串</param>
        
/// <param name="encryptKey">加密密钥,要求为8位</param>
        
/// <returns>加密成功返回加密后的字符串,失败返回源串</returns>
        public string EncryptDES(string encryptString, string encryptKey)
        {
            
try
            {
                
byte[] rgbKey = Encoding.UTF8.GetBytes(encryptKey.Substring(08));
                
byte[] rgbIV = Keys;
                
byte[] inputByteArray = Encoding.UTF8.GetBytes(encryptString);
                DESCryptoServiceProvider dCSP 
= new DESCryptoServiceProvider();
                MemoryStream mStream 
= new MemoryStream();
                CryptoStream cStream 
= new CryptoStream(mStream, dCSP.CreateEncryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
                cStream.Write(inputByteArray, 
0, inputByteArray.Length);
                cStream.FlushFinalBlock();
                
return Convert.ToBase64String(mStream.ToArray());
            }
            
catch
            {
                
return encryptString;
            }
        }

        
/// <summary>
        
/// DES解密字符串
        
/// </summary>
        
/// <param name="decryptString">待解密的字符串</param>
        
/// <param name="decryptKey">解密密钥,要求为8位,和加密密钥相同</param>
        
/// <returns>解密成功返回解密后的字符串,失败返源串</returns>
        public string DecryptDES(string decryptString, string decryptKey)
        {
            
try
            {
                
byte[] rgbKey = Encoding.UTF8.GetBytes(decryptKey.Substring(08));
                
byte[] rgbIV = Keys;
                
byte[] inputByteArray = Convert.FromBase64String(decryptString);
                DESCryptoServiceProvider DCSP 
= new DESCryptoServiceProvider();
                MemoryStream mStream 
= new MemoryStream();
                CryptoStream cStream 
= new CryptoStream(mStream, DCSP.CreateDecryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
                cStream.Write(inputByteArray, 
0, inputByteArray.Length);
                cStream.FlushFinalBlock();
                
return Encoding.UTF8.GetString(mStream.ToArray());
            }
            
catch
            {
                
return decryptString;
            }
        }
 
 
 
 
二. SHA1 加密 (HASH算法没有解密)
 
  安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。

SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。

代码如下:

        /// <summary>
        
/// use sha1 to encrypt string
        
/// </summary>
        public string SHA1_Encrypt(string Source_String)
        {
            
byte[] StrRes = Encoding.Default.GetBytes(Source_String);
            HashAlgorithm iSHA 
= new SHA1CryptoServiceProvider();
            StrRes 
= iSHA.ComputeHash(StrRes);
            StringBuilder EnText 
= new StringBuilder();
            
foreach (byte iByte in StrRes)
            {
                EnText.AppendFormat(
"{0:x2}", iByte);
            }
            
return EnText.ToString();
        }
 
 
 
 
三.RSA 加密、解密 (本例来自 MSDN)
   RSA加密算法是一种非对称加密算法。在公钥加密标准和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
  RSA算法的可靠性基于分解极大的整数是很困难的。假如有人找到一种很快的分解因子的算法的话,那么用RSA加密的信息的可靠性就肯定会极 度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的 方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。
  代码示例如下(来自MSDN):
using System;
using System.Security.Cryptography;
using System.IO; 
using System.Text;

namespace Microsoft.Samples.Security.PublicKey
{
  
class App
  {
    
// Main entry point
    static void Main(string[] args)
    {
      
// Instantiate 3 People for example. See the Person class below
      Person alice = new Person("Alice");
      Person bob 
= new Person("Bob");
      Person steve 
= new Person("Steve");

      
// Messages that will exchanged. See CipherMessage class below
      CipherMessage aliceMessage;
      CipherMessage bobMessage;
      CipherMessage steveMessage;

      
// Example of encrypting/decrypting your own message
      Console.WriteLine("Encrypting/Decrypting Your Own Message");
      Console.WriteLine(
"-----------------------------------------");

      
// Alice encrypts a message using her own public key
      aliceMessage = alice.EncryptMessage("Alice wrote this message");
      
// then using her private key can decrypt the message
      alice.DecryptMessage(aliceMessage);
      
// Example of Exchanging Keys and Messages
      Console.WriteLine();
      Console.WriteLine(
"Exchanging Keys and Messages");
      Console.WriteLine(
"-----------------------------------------");

      
// Alice Sends a copy of her public key to Bob and Steve
      bob.GetPublicKey(alice);
      steve.GetPublicKey(alice);

      
// Bob and Steve both encrypt messages to send to Alice
      bobMessage = bob.EncryptMessage("Hi Alice! - Bob.");
      steveMessage 
= steve.EncryptMessage("How are you? - Steve");

      
// Alice can decrypt and read both messages
      alice.DecryptMessage(bobMessage);
      alice.DecryptMessage(steveMessage);

      Console.WriteLine();
      Console.WriteLine(
"Private Key required to read the messages");
      Console.WriteLine(
"-----------------------------------------");

      
// Steve cannot read the message that Bob encrypted
      steve.DecryptMessage(bobMessage);
      
// Not even Bob can use the Message he encrypted for Alice.
      
// The RSA private key is required to decrypt the RS2 key used
      
// in the decryption.
      bob.DecryptMessage(bobMessage);

    } 
// method Main
  } // class App

  
class CipherMessage
  {
    
public byte[] cipherBytes;  // RC2 encrypted message text
    public byte[] rc2Key;       // RSA encrypted rc2 key
    public byte[] rc2IV;        // RC2 initialization vector
  }

  
class Person
  {
    
private RSACryptoServiceProvider rsa;
    
private RC2CryptoServiceProvider rc2;
    
private string name;

    
// Maximum key size for the RC2 algorithm
    const int keySize = 128;

    
// Person constructor
    public Person(string p_Name)
    {
      rsa 
= new RSACryptoServiceProvider();
      rc2 
= new RC2CryptoServiceProvider();
      rc2.KeySize 
= keySize;
      name 
= p_Name;
    }

    
// Used to send the rsa public key parameters
    public RSAParameters SendPublicKey() 
    {
      RSAParameters result 
= new RSAParameters();
      
try 
      {
        result 
= rsa.ExportParameters(false);
      }
      
catch (CryptographicException e)
      {
        Console.WriteLine(e.Message);
      }
      
return result;
    }

    
// Used to import the rsa public key parameters
    public void GetPublicKey(Person receiver)
    {
      
try 
      {
        rsa.ImportParameters(receiver.SendPublicKey()); 
      }
      
catch (CryptographicException e)
      {
        Console.WriteLine(e.Message);
      }
    }

    
public CipherMessage EncryptMessage(string text)
    {
      
// Convert string to a byte array
      CipherMessage message = new CipherMessage();
      
byte[] plainBytes = Encoding.Unicode.GetBytes(text.ToCharArray());

      
// A new key and iv are generated for every message
      rc2.GenerateKey();
      rc2.GenerateIV();

      
// The rc2 initialization doesnt need to be encrypted, but will
      
// be used in conjunction with the key to decrypt the message.
      message.rc2IV = rc2.IV;
      
try 
      {
        
// Encrypt the RC2 key using RSA encryption
        message.rc2Key = rsa.Encrypt(rc2.Key, false);
      }
      
catch (CryptographicException e)
      {
        
// The High Encryption Pack is required to run this  sample
        
// because we are using a 128-bit key. See the readme for
        
// additional information.
        Console.WriteLine("Encryption Failed. Ensure that the" + 
          
" High Encryption Pack is installed.");
        Console.WriteLine(
"Error Message: " + e.Message);
        Environment.Exit(
0);
      }
      
// Encrypt the Text Message using RC2 (Symmetric algorithm)
      ICryptoTransform sse = rc2.CreateEncryptor();
      MemoryStream ms 
= new MemoryStream();
      CryptoStream cs 
= new CryptoStream(ms, sse, CryptoStreamMode.Write);
      
try
      {
          cs.Write(plainBytes, 
0, plainBytes.Length);
          cs.FlushFinalBlock();
          message.cipherBytes 
= ms.ToArray();
      }
      
catch (Exception e)
      {
          Console.WriteLine(e.Message);
      }     
      
finally
      {
        ms.Close();
        cs.Close();
      }
      
return message;
    } 
// method EncryptMessage


    
public void DecryptMessage(CipherMessage message)
    {
      
// Get the RC2 Key and Initialization Vector
      rc2.IV = message.rc2IV;
      
try 
      {
        
// Try decrypting the rc2 key
        rc2.Key = rsa.Decrypt(message.rc2Key, false);
      }
      
catch (CryptographicException e)
      {
        Console.WriteLine(
"Decryption Failed: " + e.Message);
        
return;
      }
      
      ICryptoTransform ssd 
= rc2.CreateDecryptor();
      
// Put the encrypted message in a memorystream
      MemoryStream ms = new MemoryStream(message.cipherBytes);
      
// the CryptoStream will read cipher text from the MemoryStream
      CryptoStream cs = new CryptoStream(ms, ssd, CryptoStreamMode.Read);
      
byte[] initialText = new Byte[message.cipherBytes.Length];

      
try
      {
          
// Decrypt the message and store in byte array
          cs.Read(initialText, 0, initialText.Length);
      }
      
catch (Exception e)
      {
          Console.WriteLine(e.Message);
      }      
      
finally 
      {
        ms.Close();
        cs.Close();
      }

      
// Display the message received
      Console.WriteLine(name + " received the following message:");
      Console.WriteLine(
"  " + Encoding.Unicode.GetString(initialText));
    } 
// method DecryptMessage
  } // class Person

// namespace PublicKey

 

轉:http://www.cnblogs.com/erwin/archive/2009/04/14/1435551.html

 

posted @ 2009-04-15 15:31  TONYBINLJ  阅读(290)  评论(0编辑  收藏  举报