机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类
2.基于最优化方法的最佳回归系数确定
2.1 梯度上升法
参考:机器学习——梯度下降算法
2.2 训练算法:使用梯度上升找到最佳参数
Logistic回归梯度上升优化算法
def loadDataSet(): dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #加上第0维特征值 labelMat.append(int(lineArr[2])) return dataMat,labelMat #返回数据矩阵和标签向量 def sigmoid(inX): return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn, classLabels): #Logistic回归梯度上升优化算法 dataMatrix = mat(dataMatIn) #由列表转换成NumPy矩阵数据类型,dataMatrix是一个100×3的矩阵 labelMat = mat(classLabels).transpose() #由列表转换成NumPy矩阵数据类型,labelMat是一个100×1的矩阵 m,n = shape(dataMatrix) #shape函数取得矩阵的行数和列数,m=100,n=3 alpha = 0.001 #向目标移动的步长 maxCycles = 500 #迭代次数 weights = ones((n,1)) #3行1列的矩阵,这个矩阵为最佳的回归系数,和原来的100×3相乘,可以得到100×1的结果 for k in range(maxCycles): h = sigmoid(dataMatrix*weights) #矩阵相乘,得到100×1的矩阵,即把dataMat的每一行的所有元素相加 error = (labelMat - h) #求出和目标向量之间的误差 #梯度下降算法 weights = weights + alpha * dataMatrix.transpose()* error #3×100的矩阵乘以100×1的矩阵,weights是梯度算子,总是指向函数值增长最快的方向 return weights #返回一组回归系数,确定了不同类别数据之间的分割线
dataMat,labelMat = loadDataSet() print gradAscent(dataMat,labelMat) #输出回归系数
[[ 4.12414349] [ 0.48007329] [-0.6168482 ]]
2.3 分析数据:画出决策边界
画出数据集和Logistic回归最佳拟合直线的函数
def plotBestFit(wei): #画出数据集和Logistic回归最佳拟合直线的函数 import matplotlib.pyplot as plt weights = wei.getA() dataMat,labelMat=loadDataSet() #数据矩阵和标签向量 dataArr = array(dataMat) #转换成数组 n = shape(dataArr)[0] xcord1 = []; ycord1 = [] #声明两个不同颜色的点的坐标 xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i])== 1: xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) #最佳拟合曲线,这里设w0x0+w1x1+w2x2=0,因为0是两个分类(0和1)的分界处(Sigmoid函数),且此时x0=1 #图中y表示x2,x表示x1 y = (-weights[0]-weights[1]*x)/weights[2] ax.plot(x, y) plt.xlabel('X1'); plt.ylabel('X2'); plt.show()
dataMat,labelMat = loadDataSet() #print dataMat #print labelMat #print gradAscent(dataMat,labelMat) #输出回归系数 plotBestFit(gradAscent(dataMat,labelMat))
2.4 训练算法:随梯度上升
def stocGradAscent0(dataMatrix, classLabels): #随机梯度上升算法 m,n = shape(dataMatrix) alpha = 0.01 weights = ones(n) #3行1列的矩阵,初始最佳回归系数都为1, for i in range(m): h = sigmoid(sum(dataMatrix[i]*weights)) #计算出是数值,而不是向量,dataMatrix[100×3]中取得[1×3],乘以[3×1],得到数值 error = classLabels[i] - h weights = weights + alpha * error * dataMatrix[i] return weights def plotBestFit(weights): #画出数据集和Logistic回归最佳拟合直线的函数 import matplotlib.pyplot as plt #weights = wei.getA() dataMat,labelMat=loadDataSet() #数据矩阵和标签向量 dataArr = array(dataMat) #转换成数组 n = shape(dataArr)[0] xcord1 = []; ycord1 = [] #声明两个不同颜色的点的坐标 xcord2 = []; ycord2 = [] for i in range(n): if int(labelMat[i])== 1: xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='green') x = arange(-3.0, 3.0, 0.1) #最佳拟合曲线,这里设w0x0+w1x1+w2x2=0,因为0是两个分类(0和1)的分界处(Sigmoid函数),且此时x0=1 #图中y表示x2,x表示x1 y = (-weights[0]-weights[1]*x)/weights[2] ax.plot(x, y) plt.xlabel('X1'); plt.ylabel('X2'); plt.show()
dataMat,labelMat = loadDataSet() #print dataMat #print labelMat #print gradAscent(dataMat,labelMat) #输出回归系数 #plotBestFit(gradAscent(dataMat,labelMat)) plotBestFit(stocGradAscent0(array(dataMat),labelMat))
改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150): m,n = shape(dataMatrix) weights = ones(n) #初始化回归系数 for j in range(numIter): #从0到149开始循环 dataIndex = range(m) for i in range(m): #从0到99开始循环 alpha = 4/(1.0+j+i)+0.0001 #步进alpha的值逐渐减小,j=0-150,i=1-100,使得收敛的速度加快 randIndex = int(random.uniform(0,len(dataIndex))) #样本随机选择0-99中的一个数计算回归系数,减小周期性波动的现象 h = sigmoid(sum(dataMatrix[randIndex]*weights)) error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] del(dataIndex[randIndex]) return weights
示例:从疝气病症预测病马的死亡率
1.准备数据:处理数据中的缺失值
2.测试算法:使用Logistic回归进行分类
def classifyVector(inX, weights): #输入回归系数和特征向量,计算出Sigmoid值,如果大于0.5则返回1,否则返回0 prob = sigmoid(sum(inX*weights)) if prob > 0.5: return 1.0 else: return 0.0 def colicTest(): frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt') trainingSet = []; trainingLabels = [] for line in frTrain.readlines(): #导入训练数据 currLine = line.strip().split('\t') lineArr =[] for i in range(21): #把0-20个病症加到列表中 lineArr.append(float(currLine[i])) trainingSet.append(lineArr) #把得到的每个列表加到训练集合中 trainingLabels.append(float(currLine[21])) #把标签加到训练标签中 trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000) #使用改进的随机梯度上升算法,递归1000次,计算回归系数 errorCount = 0; numTestVec = 0.0 for line in frTest.readlines(): #导入测试数据 numTestVec += 1.0 #测试数据的总数 currLine = line.strip().split('\t') lineArr =[] for i in range(21): #把0-20个病症加到列表中,作为分类器的输入 lineArr.append(float(currLine[i])) if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]): #计算分类错误的次数,currLine[21]表示真正死亡与否 errorCount += 1 errorRate = (float(errorCount)/numTestVec) #计算错误率 print "the error rate of this test is: %f" % errorRate return errorRate def multiTest(): #调用colicTest()十次并求结果的平均值 numTests = 10; errorSum=0.0 for k in range(numTests): errorSum += colicTest() print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
本文只发表于博客园和tonglin0325的博客,作者:tonglin0325,转载请注明原文链接:https://www.cnblogs.com/tonglin0325/p/6064730.html