Python学习笔记——pandas

官方文档:https://pandas.pydata.org/docs/reference/index.html

1.loc属性,通过标签或布尔数组访问一组行和列。pandas.DataFrame.loc

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=['cobra', 'viper', 'sidewinder'],
...      columns=['max_speed', 'shield'])
>>> df
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

获取单个label,返回是一个series

>>> df.loc['viper']
max_speed    4
shield       5
Name: viper, dtype: int64

获取List of labels。注意使用 [[]] 返回的是一个 DataFrame

>>> df.loc[['viper', 'sidewinder']]
            max_speed  shield
viper               4       5
sidewinder          7       8

通过行标签和列标签来获得具体值

>>> df.loc['cobra', 'shield']
2

对行进行切片,对列进行单标签切片(取得部分行和部分列)

>>> df.loc['cobra':'viper', 'max_speed']
cobra    1
viper    4
Name: max_speed, dtype: int64

通过boolean值来选取部分行

>>> df.loc[[False, False, True]]
            max_speed  shield
sidewinder          7       8

条件筛选符合条件的行或者列

>>> df.loc[df['shield'] > 6]
            max_speed  shield
sidewinder          7       8

条件筛选后再指定某个列

>>> df.loc[df['shield'] > 6, ['max_speed']]
            max_speed
sidewinder          7

多个条件

>>> df.loc[(df['max_speed'] > 1) & (df['shield'] < 8)]
       max_speed  shield
viper          4       5

>>> df.loc[(df['max_speed'] > 4) | (df['shield'] < 5)]
            max_speed  shield
cobra               1       2
sidewinder          7       8

 

posted @ 2016-11-11 16:58  tonglin0325  阅读(2218)  评论(0编辑  收藏  举报