Spark学习笔记——读写Avro

1.DataFrame API读取avro文件

https://sparkbyexamples.com/spark/read-write-avro-file-spark-dataframe/

pom引入,spark2.4.0之后可以使用apache的spark-avro包,之前需要使用databricks的spark-avro包

<!--avro-->
<dependency>
    <groupId>org.apache.avro</groupId>
    <artifactId>avro</artifactId>
    <version>1.11.0</version>
    <exclusions>
        <exclusion>
            <artifactId>jackson-databind</artifactId>
            <groupId>com.fasterxml.jackson.core</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.apache.parquet</groupId>
    <artifactId>parquet-avro</artifactId>
    <version>1.12.1</version>
</dependency>
<!--spark-->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.4.0.cloudera2</version>
    <exclusions>
        <exclusion>
            <artifactId>avro</artifactId>
            <groupId>org.apache.avro</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>2.4.0.cloudera2</version>
    <exclusions>
        <exclusion>
            <artifactId>avro</artifactId>
            <groupId>org.apache.avro</groupId>
        </exclusion>
        <exclusion>
            <artifactId>parquet-jackson</artifactId>
            <groupId>com.twitter</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-avro_2.11</artifactId>
    <version>2.4.0.cloudera2</version>
</dependency>

读取avro文件,得到DataFrame

import java.io.File

import org.apache.avro.Schema
import org.apache.spark.sql.SparkSession

object SparkAvroDemo {

  def main(args: Array[String]) {

    val sparkSession = SparkSession.builder()
      .master("local")
      .appName("spark session example")
      .getOrCreate()

    val schemaAvro = new Schema.Parser().parse(new File("src/main/avro/kst.avsc"))

    val df = sparkSession.read
      .format("avro")
      .option("avroSchema", schemaAvro.toString)
      .load("file:///Users/lintong/coding/java/interview/bigdata/data/000000_0")

    df.show()

  }

}

 

 

DataFrame API写入avro文件 

df.write.format("avro").save("person.avro")

 

2.spark使用Hadoop API读取avro文件

val sparkSession = SparkSession.builder()
  .master("local")
  .appName("spark session example")
  .getOrCreate()

val sc = sparkSession.sparkContext
val conf = sc.hadoopConfiguration
val path = "file:///Users/lintong/coding/java/interview/bigdata/data/000000_0"
val rdd = sc.newAPIHadoopFile(
  path,
  classOf[AvroKeyInputFormat[test_serializer]],
  classOf[AvroKey[test_serializer]],
  classOf[NullWritable],
  conf
).map(_._1.datum())
rdd.foreach(println(_))

输出

{"string1": "test", "int1": 2, "tinyint1": 1, "smallint1": 2, "bigint1": 1000, "boolean1": true, "float1": 1.111, "double1": 2.22222, "list1": ["test1", "test2", "test3"], "map1": {"test123": 2222, "test321": 4444}, "struct1": {"sInt": 123, "sBoolean": true, "sString": "London"}, "union1": 0.2, "enum1": "BLUE", "nullableint": 12345, "bytes1": "00008DAC", "fixed1": [49, 49, 49]}

参考:

https://github.com/subprotocol/spark-avro-example/blob/master/src/main/scala/com/subprotocol/AvroUtil.scala

 

spark使用Hadoop API写入avro文件

val writeJob = new Job()
AvroJob.setOutputKeySchema(writeJob, test_serializer.SCHEMA$)
writeJob.setOutputFormatClass(classOf[AvroKeyOutputFormat[test_serializer]])

rdd
  .map { s => (new AvroKey(s), NullWritable.get) }
  .saveAsNewAPIHadoopFile(
    "file:///Users/lintong/coding/java/interview/bigdata/data/avro_container",
    classOf[AvroKey[test_serializer]],
    classOf[NullWritable],
    classOf[AvroKeyOutputFormat[test_serializer]],
    writeJob.getConfiguration
  )

参考:

https://mail-archives.apache.org/mod_mbox/spark-user/201411.mbox/%3CCAKz4c0S_cuo90q2JXudvx9WC4FWU033kX3-FjUJYTXxhr7PXOw@mail.gmail.com%3E

 

3.spark使用Hadoop API读取avro parquet文件

import org.apache.avro.specific.SpecificRecord
import org.apache.hadoop.mapred.JobConf
import org.apache.parquet.avro.AvroParquetInputFormat
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD

import scala.reflect.{ClassTag, classTag}

object HDFSIO {

  def readAvroParquetFile[T <: SpecificRecord : ClassTag](
                                                           sc: SparkContext,
                                                           path: String,
                                                           avroClass: Class[T]): RDD[T] = {
    val jobConf = new JobConf(sc.hadoopConfiguration)
    sc.newAPIHadoopFile(path, classOf[AvroParquetInputFormat[T]], classOf[Void], avroClass, jobConf)
      .map {
        case (_, obj) => obj
      }
  }

}

 

然后调用HDFSIO.readAvroParquetFile

val rdd = HDFSIO.readAvroParquetFile(sc, "file:///Users/lintong/coding/java/interview/bigdata/data/avro_parquet", classOf[test_serializer])
rdd.foreach(line => println(line))

输出

{"string1": "test", "int1": 2, "tinyint1": 1, "smallint1": 2, "bigint1": 1000, "boolean1": true, "float1": 1.111, "double1": 2.22222, "list1": ["test1", "test2", "test3"], "map1": {"test123": 2222, "test321": 4444}, "struct1": {"sInt": 123, "sBoolean": true, "sString": "London"}, "union1": 0.2, "enum1": "BLUE", "nullableint": 12345, "bytes1": "00008DAC", "fixed1": [49, 49, 49]}
{"string1": "test", "int1": 2, "tinyint1": 1, "smallint1": 2, "bigint1": 1000, "boolean1": true, "float1": 1.111, "double1": 2.22222, "list1": ["test1", "test2", "test3"], "map1": {"test123": 2222, "test321": 4444}, "struct1": {"sInt": 123, "sBoolean": true, "sString": "London"}, "union1": 0.2, "enum1": "BLUE", "nullableint": 12345, "bytes1": "00008DAC", "fixed1": [49, 49, 49]}

 

spark使用Hadoop API写入avro parquet文件

 

AvroWriteSupport.setSchema(sc.hadoopConfiguration, test_serializer.SCHEMA$)

rdd
  .map((null, _)).saveAsNewAPIHadoopFile(
  "file:///Users/lintong/coding/java/interview/bigdata/data/avro_parquet",
  classOf[Void],
  classOf[test_serializer],
  classOf[AvroParquetOutputFormat[test_serializer]],
  writeJob.getConfiguration
)

 

posted @ 2016-03-26 22:50  tonglin0325  阅读(466)  评论(0编辑  收藏  举报