Spark学习笔记——使用CatalystSqlParser解析Spark SQL

Spark的parser使用的是antlr来实现,其g4文件如下

1
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/antlr4/org/apache/spark/sql/catalyst/parser/SqlBase.g4

如果想解析spark SQL的语句,可以使用其原生的parser来进行解析,代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package com.bigdata.spark
 
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.analysis.UnresolvedRelation
import org.apache.spark.sql.catalyst.parser.CatalystSqlParser
import org.apache.spark.sql.catalyst.plans.logical.{InsertIntoTable, LogicalPlan}
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.execution.datasources.CreateTable
 
object SparkSQLParser {
 
  def main(args: Array[String]): Unit = {
//    val spark = SparkSession.builder()
//      .appName("SQL Create Table Parser")
//      .master("local[*]")
//      .enableHiveSupport()  // 关键:启用 Hive 语法支持
//      .getOrCreate()
//    val logicalPlan: LogicalPlan = spark.sessionState.sqlParser.parsePlan(sql)
 
    val sql = "SELECT id, name FROM users WHERE age > 18" // select
//    val sql = "CREATE TABLE users (id INT, name STRING)" // create
//    val sql = "INSERT INTO users VALUES (1, 'Alice')" // insert
//    val sql = "INSERT INTO xx.table2 SELECT * FROM xx.table1" // insert
 
 
    val logicalPlan: LogicalPlan = CatalystSqlParser.parsePlan(sql)
    println(logicalPlan)
    logicalPlan match {
      // 解析建表语句
      case createTable: CreateTable =>
        println(s"SQL: [$sql] -> 这是一个 CREATE TABLE 语句")
      // 解析insert语句
      case _: InsertIntoTable =>
        println(s"SQL: [$sql] -> 这是一个 INSERT 语句")
        // 解析血缘
        var inputTables = Set[String]()
        var outputTable: Option[String] = None
        // 遍历 LogicalPlan 解析血缘
        logicalPlan.foreach {
          case UnresolvedRelation(tableIdentifier) =>
            inputTables += tableIdentifier.quotedString  // 解析输入表
          case InsertIntoTable(table, _, _, _, _) =>
            table match {
              case UnresolvedRelation(tableIdentifier) =>
                outputTable = Some(tableIdentifier.quotedString) // 解析输出表
              case _ =>
                outputTable = Some(table.toString()) // 其他情况
            }
          case _ => // 其他情况忽略
        }
        println(s"输入表: ${inputTables.mkString(", ")}")
        println(s"输出表: ${outputTable.getOrElse("")}")
      // 解析select语句
      case _: Project | _: Filter | _: Aggregate | _: Join | _: LogicalPlan =>
        println(s"SQL: [$sql] -> 这是一个 SELECT 查询语句")
      case _ =>
        println(s"SQL: [$sql] -> 未知类型")
    }
  }
 
}

1.解析insert语句

1
2
3
4
5
6
7
'InsertIntoTable 'UnresolvedRelation `xx`.`table2`, false, false
+- 'Project [*]
   +- 'UnresolvedRelation `xx`.`table1`
 
SQL: [INSERT INTO xx.table2 SELECT * FROM xx.table1] -> 这是一个 INSERT 语句
输入表: `xx`.`table1`
输出表: `xx`.`table2`

2.解析select语句

1
2
3
4
5
'Project ['id, 'name]
+- 'Filter ('age > 18)
   +- 'UnresolvedRelation `users`
 
SQL: [SELECT id, name FROM users WHERE age > 18] -> 这是一个 SELECT 查询语句

3.解析create语句

由于spark默认是不支持解析create sql的,需要依赖hive

使用sparksession解析会报

1
2
3
4
Exception in thread "main" java.lang.IllegalArgumentException: Unable to instantiate SparkSession with Hive support because Hive classes are not found.
    at org.apache.spark.sql.SparkSession$Builder.enableHiveSupport(SparkSession.scala:869)
    at com.bigdata.spark.SparkSQLParser$.main(SparkSQLParser.scala:17)
    at com.bigdata.spark.SparkSQLParser.main(SparkSQLParser.scala)

使用CatalystSqlParser解析会报

1
2
3
4
5
6
7
8
9
10
Exception in thread "main" org.apache.spark.sql.catalyst.parser.ParseException:
Unsupported SQL statement
== SQL ==
CREATE TABLE users (id INT, name STRING)
    at org.apache.spark.sql.catalyst.parser.AbstractSqlParser$$anonfun$parsePlan$1.apply(ParseDriver.scala:74)
    at org.apache.spark.sql.catalyst.parser.AbstractSqlParser$$anonfun$parsePlan$1.apply(ParseDriver.scala:69)
    at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:100)
    at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parsePlan(ParseDriver.scala:69)
    at com.bigdata.spark.SparkSQLParser$.main(SparkSQLParser.scala:26)
    at com.bigdata.spark.SparkSQLParser.main(SparkSQLParser.scala)

可以使用hive parser来解析建表语句,参考:antlr解析hive语句

 

posted @   tonglin0325  阅读(321)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
点击右上角即可分享
微信分享提示