Flink学习笔记——DataStream API
Flink中的DataStream任务用于实现data streams的转换,data stream可以来自不同的数据源,比如消息队列,socket,文件等。
Ref
1 | https: //ci .apache.org /projects/flink/flink-docs-stable/zh/dev/datastream_api .html |
使用DataStream API需要使用stream env
1 | StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); |
DataStream支持的Data Source有:File-based,Socket-based,Collection-based,Custom
1.File-based
1 2 3 4 5 | readTextFile(path) - Reads text files, i.e. files that respect the TextInputFormat specification, line-by-line and returns them as Strings. readFile(fileInputFormat, path) - Reads (once) files as dictated by the specified file input format . readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo) - This is the method called internally by the two previous ones. It reads files in the path based on the given fileInputFormat. Depending on the provided watchType, this source may periodically monitor (every interval ms) the path for new data (FileProcessingMode.PROCESS_CONTINUOUSLY), or process once the data currently in the path and exit (FileProcessingMode.PROCESS_ONCE). Using the pathFilter, the user can further exclude files from being processed. |
2.Socket-based
1 | socketTextStream - Reads from a socket. Elements can be separated by a delimiter |
3.Collection-based
1 2 3 4 5 6 7 8 9 | fromCollection(Collection) - Creates a data stream from the Java Java.util.Collection. All elements in the collection must be of the same type . fromCollection(Iterator, Class) - Creates a data stream from an iterator. The class specifies the data type of the elements returned by the iterator. fromElements(T ...) - Creates a data stream from the given sequence of objects. All objects must be of the same type . fromParallelCollection(SplittableIterator, Class) - Creates a data stream from an iterator, in parallel. The class specifies the data type of the elements returned by the iterator. generateSequence(from, to) - Generates the sequence of numbers in the given interval, in parallel. |
4.Custom
1 | addSource - Attach a new source function . For example, to read from Apache Kafka you can use addSource(new FlinkKafkaConsumer<>(...)). See connectors for more details |
Data Stream支持的transformations算子
1 | https: //ci .apache.org /projects/flink/flink-docs-release-1 .12 /zh/dev/stream/operators/ |
DataStream支持的Data Sink有:
1 2 3 4 5 6 7 8 9 10 11 | writeAsText() / TextOutputFormat - Writes elements line-wise as Strings. The Strings are obtained by calling the toString() method of each element. writeAsCsv(...) / CsvOutputFormat - Writes tuples as comma-separated value files. Row and field delimiters are configurable. The value for each field comes from the toString() method of the objects. print() / printToErr() - Prints the toString() value of each element on the standard out / standard error stream. Optionally, a prefix (msg) can be provided which is prepended to the output. This can help to distinguish between different calls to print. If the parallelism is greater than 1, the output will also be prepended with the identifier of the task which produced the output. writeUsingOutputFormat() / FileOutputFormat - Method and base class for custom file outputs. Supports custom object-to-bytes conversion. writeToSocket - Writes elements to a socket according to a SerializationSchema addSink - Invokes a custom sink function . Flink comes bundled with connectors to other systems (such as Apache Kafka) that are implemented as sink functions. |
本文只发表于博客园和tonglin0325的博客,作者:tonglin0325,转载请注明原文链接:https://www.cnblogs.com/tonglin0325/p/14121337.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决