Flink学习笔记——读写kafka

Flink的kafka connector文档

https://ci.apache.org/projects/flink/flink-docs-release-1.12/zh/dev/connectors/kafka.html

Flink写入kafka时候需要实现序列化反序列化

部分代码参考了

https://github.com/apache/flink/blob/master/flink-end-to-end-tests/flink-streaming-kafka-test/src/main/java/org/apache/flink/streaming/kafka/test/KafkaExample.java

以及

https://juejin.im/post/5d844d11e51d4561e0516bbd
https://developer.aliyun.com/article/686809

1.依赖,其中

flink-java提供了flink的java api,包括dataset执行环境,format,一些算子

https://github.com/apache/flink/tree/master/flink-java/src/main/java/org/apache/flink/api/java

flink-streaming-java提供了flink的java streaming api,包括stream执行环境,一些算子

https://github.com/apache/flink/tree/master/flink-streaming-java/src/main/java/org/apache/flink/streaming/api

flink-connector-kafka提供了kafka的连接器

https://github.com/apache/flink/tree/master/flink-connectors/flink-connector-kafka

1.pom文件依赖

        <!-- log4j -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.7</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
            <scope>runtime</scope>
        </dependency>
        <!--flink-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.10.0</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.10.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.10.0</version>
        </dependency>

2.Kafka Consumer

作为kafka consumer有几个比较重要的配置参数

 

2.1 消费kafka内容并打印

这里选用SimpleStringSchema序列化方式,只会打印message

    public static void main(String[] args) throws Exception {

        ParameterTool pt = ParameterTool.fromArgs(args);
        if (pt.getNumberOfParameters() != 1) {
            throw new Exception("Missing parameters!\n" +
                    "Usage: --conf-file <conf-file>");
        }
        String confFile = pt.get("conf-file");
        pt = ParameterTool.fromPropertiesFile(confFile);

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setGlobalJobParameters(pt);


        // 消费kafka
        DataStream input = env
                .addSource(
                        new FlinkKafkaConsumer(
                                pt.getProperties().getProperty("input.topic"),
                                new SimpleStringSchema(),
                                pt.getProperties()
                        )
                );

        // 打印
        input.print();

        env.execute("Kafka consumer Example");
    }

idea args配置

--conf-file ./conf/xxxxx.conf

xxxxx.conf内容

# kafka source config
bootstrap.servers=master:9092
input.topic=test_topic
group.id=test

往kafka的topic中灌入数据,控制台会打印出刚刚输入的数据

 

2.2 消费kafka内容并打印

如果想要在消费kafka的时候,得到除message之外的其他信息,比如这条消息的offset,topic,partition等,可以使用 JSONKeyValueDeserializationSchema,JSONKeyValueDeserializationSchema将以json格式来反序列化byte数组

使用 JSONKeyValueDeserializationSchema 的时候需要保证输入kafka的数据是json格式的,否则会有报错

Caused by: org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonParseException: Unrecognized token 'asdg': was expecting (JSON String, Number, Array, Object or token 'null', 'true' or 'false')

实现

FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer = new FlinkKafkaConsumer(pt.getProperties().getProperty("input.topic"),
                new JSONKeyValueDeserializationSchema(false), pt.getProperties());

如果为false,输出

2> {"value":123123}

如果为true,输出

2> {"value":123123,"metadata":{"offset":18,"topic":"xxxxx","partition":0}}

map输出offset

        // 打印
        input.map(new MapFunction<ObjectNode, String>() {
            @Override
            public String map(ObjectNode value) {
                return value.get("metadata").get("offset").asText();
            }
        }).print();

  

如果还要获得其他信息,比如kafka消息的key,也可以自行实现 KafkaDeserializationSchema,参考如下

https://blog.csdn.net/jsjsjs1789/article/details/105099742
https://blog.csdn.net/weixin_40954192/article/details/107561435

kafka的key的用途有2个:一是作为消息的附加信息,二是可以用来决定消息应该写到kafka的哪个partition

public class KafkaConsumerRecordDeserializationSchema implements KafkaDeserializationSchema<ConsumerRecord<String, String>> {

    @Override
    public boolean isEndOfStream(ConsumerRecord<String, String> nextElement) {
        return false;
    }

    @Override
    public ConsumerRecord<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
        return new ConsumerRecord<String, String>(
                record.topic(),
                record.partition(),
                record.offset(),
                record.key() != null ? new String(record.key()) : null,
                record.value() != null ? new String(record.value()) : null);
    }

    @Override
    public TypeInformation<ConsumerRecord<String, String>> getProducedType() {
        return TypeInformation.of(new TypeHint<ConsumerRecord<String, String>>() {
        });
    }
}

然后

FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer =
                new FlinkKafkaConsumer<>(pt.getProperties().getProperty("input.topic"), new KafkaConsumerRecordDeserializationSchema(), pt.getProperties());

输出  

2> ConsumerRecord(topic = xxxx, partition = 0, leaderEpoch = null, offset = 19, NoTimestampType = -1, serialized key size = -1, serialized value size = -1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 1111111)

  

3.Kafka Producer

FlinkKafkaProducer有多个版本,参考:你真的了解Flink Kafka source吗?

FlinkKafkaProducer可以参考

https://www.programcreek.com/java-api-examples/?api=org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer

3.1 从kafka的topic读取数据 ,之后写到另外一个kafka的topic中

使用 SimpleStringSchema,这里FlinkKafkaProducer会显示过期,但不影响功能

    public static void main(String[] args) throws Exception {

        ParameterTool pt = ParameterTool.fromArgs(args);
        if (pt.getNumberOfParameters() != 1) {
            throw new Exception("Missing parameters!\n" +
                    "Usage: --conf-file <conf-file>");
        }
        String confFile = pt.get("conf-file");
        pt = ParameterTool.fromPropertiesFile(confFile);

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setGlobalJobParameters(pt);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer = new FlinkKafkaConsumer(
                pt.getProperties().getProperty("input.topic"),
                new SimpleStringSchema(),
                pt.getProperties()
        );

        // 消费kafka
        DataStream input = env.addSource(consumer);


        // 打印
        input.print();

        // producer
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(
                pt.getProperties().getProperty("output.topic"),
                new SimpleStringSchema(),
                pt.getProperties()
        );

        // 往kafka中写数据
        input.addSink(producer);

        env.execute("Kafka consumer Example");
    }

配置文件

# kafka config
bootstrap.servers=localhost:9092
input.topic=thrift_log_test
output.topic=test
group.id=test

输出

如果想写到文件,可以setParallelism是控制输出的文件数量,1是写成1个文件,大于1会是文件夹下面的多个文件

input.writeAsText("file:///Users/lintong/coding/java/flink-demo/conf/test.log").setParallelism(1);

  

3.2 也可以自行实现 KafkaSerializationSchema 接口来序列化string

import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.nio.charset.StandardCharsets;

public class KafkaProducerStringSerializationSchema implements KafkaSerializationSchema<String> {

    private String topic;

    public KafkaProducerStringSerializationSchema(String topic) {
        super();
        this.topic = topic;
    }

    @Override
    public ProducerRecord<byte[], byte[]> serialize(String element, Long timestamp) {
        return new ProducerRecord<>(topic, element.getBytes(StandardCharsets.UTF_8));
    }

}

然后

    public static void main(String[] args) throws Exception {

        ParameterTool pt = ParameterTool.fromArgs(args);
        if (pt.getNumberOfParameters() != 1) {
            throw new Exception("Missing parameters!\n" +
                    "Usage: --conf-file <conf-file>");
        }
        String confFile = pt.get("conf-file");
        pt = ParameterTool.fromPropertiesFile(confFile);

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setGlobalJobParameters(pt);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        // consumer
        FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer = new FlinkKafkaConsumer(
                pt.getProperties().getProperty("input.topic"),
                new SimpleStringSchema(),
                pt.getProperties()
        );

        // 消费kafka
        DataStream input = env.addSource(consumer);

        // 打印
        input.print();

        // producer
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(
                pt.getProperties().getProperty("output.topic"),
                new KafkaProducerStringSerializationSchema(pt.getProperties().getProperty("output.topic")),
                pt.getProperties(),
                FlinkKafkaProducer.Semantic.EXACTLY_ONCE
        );

        // 往kafka中写数据
        input.addSink(producer);

        env.execute("Kafka consumer Example");
    }

  

3.3 使用 ProducerRecord<String, String> 序列化

public class KafkaProducerRecordSerializationSchema implements KafkaSerializationSchema<ProducerRecord<String, String>> {

    @Override
    public ProducerRecord<byte[], byte[]> serialize(ProducerRecord<String, String> element, Long timestamp) {
        return new ProducerRecord<>(element.topic(), element.value().getBytes(StandardCharsets.UTF_8));
    }

}

然后

    public static void main(String[] args) throws Exception {

        ParameterTool pt = ParameterTool.fromArgs(args);
        if (pt.getNumberOfParameters() != 1) {
            throw new Exception("Missing parameters!\n" +
                    "Usage: --conf-file <conf-file>");
        }
        String confFile = pt.get("conf-file");
        pt = ParameterTool.fromPropertiesFile(confFile);

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setGlobalJobParameters(pt);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        // consumer
        FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer = new FlinkKafkaConsumer<>(
                pt.getProperties().getProperty("input.topic"),
                new KafkaConsumerRecordDeserializationSchema(),
                pt.getProperties()
        );

        // 消费kafka
        DataStream input = env.addSource(consumer);

        String outputTopic = pt.getProperties().getProperty("output.topic");

        // 转换
        DataStream output = input.map(new MapFunction<ConsumerRecord<String, String>, ProducerRecord<String, String>>() {
            @Override
            public ProducerRecord<String, String> map(ConsumerRecord<String, String> value) throws Exception {
                ProducerRecord<String, String> producerRecord = new ProducerRecord<>(outputTopic, value.value());
                return producerRecord;
            }
        });

        FlinkKafkaProducer<ProducerRecord<String, String>> producer = new FlinkKafkaProducer<>(
                pt.getProperties().getProperty("output.topic"),
                new KafkaProducerRecordSerializationSchema(),
                pt.getProperties(),
                FlinkKafkaProducer.Semantic.EXACTLY_ONCE
        );

        // 往kafka中写数据
        output.addSink(producer);

        output.print();

        env.execute("Kafka consumer Example");
    }

  

也可以参考官方文档

https://github.com/apache/flink/blob/master/flink-end-to-end-tests/flink-streaming-kafka-test/src/main/java/org/apache/flink/streaming/kafka/test/KafkaExample.java

代码

package com.bigdata.flink;

import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KafkaExampleUtil {

    public static StreamExecutionEnvironment prepareExecutionEnv(ParameterTool parameterTool)
            throws Exception {

        if (parameterTool.getNumberOfParameters() < 5) {
            System.out.println("Missing parameters!\n" +
                    "Usage: Kafka --input-topic <topic> --output-topic <topic> " +
                    "--bootstrap.servers <kafka brokers> " +
                    "--zookeeper.connect <zk quorum> --group.id <some id>");
            throw new Exception("Missing parameters!\n" +
                    "Usage: Kafka --input-topic <topic> --output-topic <topic> " +
                    "--bootstrap.servers <kafka brokers> " +
                    "--zookeeper.connect <zk quorum> --group.id <some id>");
        }

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
        env.enableCheckpointing(5000); // create a checkpoint every 5 seconds
        env.getConfig().setGlobalJobParameters(parameterTool); // make parameters available in the web interface
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        return env;
    }


}

代码

package com.bigdata.flink;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

public class KafkaExample {

    public static void main(String[] args) throws Exception {
        // parse input arguments
        final ParameterTool parameterTool = ParameterTool.fromArgs(args);
        StreamExecutionEnvironment env = KafkaExampleUtil.prepareExecutionEnv(parameterTool);

        // 消费kafka
        DataStream input = env
                .addSource(new FlinkKafkaConsumer("test_topic", new SimpleStringSchema(), parameterTool.getProperties()));

        // 打印
        input.print();

        // 往kafka中写数据
        FlinkKafkaProducer<String> myProducer = new FlinkKafkaProducer<>(
                parameterTool.getProperties().getProperty("bootstrap.servers"),            // broker list
                "test_source",                  // target topic
                new SimpleStringSchema());   // serialization schema

        input.map(line -> line + "test").addSink(myProducer);

        env.execute("Modern Kafka Example");
    }

}

配置

--input-topic test_topic --output-topic test_source --bootstrap.servers master:9092 --zookeeper.connect master:2181 --group.id test_group

往kafka topic中放数据

/opt/cloudera/parcels/KAFKA/bin/kafka-console-producer --broker-list master:9092 --topic test_topic

输出

消费flink程序写入的topic

/opt/cloudera/parcels/KAFKA/bin/kafka-console-consumer --bootstrap-server master:9092 --topic test_source

输出

 

4.数据重复问题

Flink自带Exactly Once语义,对于支持事务的存储,可以实现数据的不重不丢。Kafka在0.11.0版本的时候,支持了事务,参考:【干货】Kafka 事务特性分析

 

要使用Flink实现Exactly Once,需要注意,参考:Flink exactly-once 实战笔记

1. kafka的Producer写入数据的时候需要通过事务来写入,即使用Exactly-once语义的FlinkKafkaProducer;

2. 是kafka的consumer消费的时候,需要给消费者加上参数isolation.level=read_committed来保证未commit的消息对消费者不可见

 

Kafka端到端一致性需要注意的点,参考:Flink Kafka端到端精准一致性测试

1. Flink任务需要开启checkpoint配置为CheckpointingMode.EXACTLY_ONCE

2. Flink任务FlinkKafkaProducer需要指定参数Semantic.EXACTLY_ONCE

3. Flink任务FlinkKafkaProducer配置需要配置transaction.timeout.ms,checkpoint间隔(代码指定)<transaction.timeout.ms(默认为1小时)<transaction.max.timeout.ms(默认为15分钟)

4. 消费端在消费FlinkKafkaProducer的topic时需要指定isolation.level(默认为read_uncommitted)为read_committed

 

关于flink读写kafka Exactly Once的最佳实践,参考:Best Practices for Using Kafka Sources/Sinks in Flink Jobs

1. 在FlinkKafkaProducer开启了Semantic.EXACTLY_ONCE之后,如果遇到一下报错

Unexpected error in InitProducerIdResponse; The transaction timeout is larger than the maximum value allowed by the broker (as configured by max.transaction.timeout.ms).

则需要调小Producer的transaction.timeout.ms参数,其默认值为1 hour,比如调整成

transaction.timeout.ms=300000

2. 开启Semantic.EXACTLY_ONCE之后,需要保证transactional.id是唯一的

3. 设置做checkpoint的间隔时间,比如

StreamExecutionEnvironment env = ...;
env.enableCheckpointing(1000); // unit is millisecond

4. 并发checkpoint,默认的FlinkKafkaProducer有一个5个KafkaProducers的线程池,支持并发做4个checkpoint

5. 需要注意kafka connect的版本

6. 当kafka集群不可用的时候,避免刷日志

min.insync.replicas
reconnect.backoff.max.ms reconnect.backoff.ms

  

关于kafka的事务机制和read_committed,参考:Kafka Exactly-Once 之事务性实现

 

5.flink读写kafka端到端exactly once

socket stream 写入数据 -> flink读取socket流式数据 -> 事务写kafka -> flink使用isolation.level=read_committed来消费kafka数据 -> console打印数据

由于使用了checkpoint机制,在消费kafka的时候,只有当flink周期性做checkpoint成功后,才会提交offset;如果当flink任务挂掉的时候,对于未提交事务的消息,消费者是不可见的

 

posted @ 2020-03-15 15:23  tonglin0325  阅读(1937)  评论(0编辑  收藏  举报