antlr解析hive语句
hive是使用antlr来解析的
parser要做的事情,是从无结构的字符串里面,解码产生有结构的数据结构(a parser is a function accepting strings as input and returning some structure as output),参考 Parser_combinator wiki
parser分成两种,一种是parser combinator,一种是parser generator,区别可以参考 王垠的文章——对 Parser 的误解
1.parser combinator是需要手写parser,a parser combinator is a higher-order function that accepts several parsers as input and returns a new parser as its output,比如Thrift的Parser
https://github.com/apache/thrift/blob/master/compiler/cpp/src/thrift/main.cc
2.parser generator是需要你用某种指定的描述语言来表示出语法,然后自动把他们转换成parser的代码,比如Antlr里面的g4语法文件,calcite的ftl语法文件,hue使用的jison以及flex和cup等,缺点是由于代码是生成的,排错比较困难
使用了Antlr的parser有Hive,Presto,Spark SQL
美团点评的文章
https://tech.meituan.com/2014/02/12/hive-sql-to-mapreduce.html
以及hive源码的测试用例
https://github.com/apache/hive/blob/branch-1.1/ql/src/test/org/apache/hadoop/hive/ql/parse/TestHiveDecimalParse.java
hive的g4文件如下
老版本的hive
https://github.com/apache/hive/blob/59d8665cba4fe126df026f334d35e5b9885fc42c/parser/src/java/org/apache/hadoop/hive/ql/parse/HiveParser.g
新版本的hive
https://github.com/apache/hive/blob/master/hplsql/src/main/antlr4/org/apache/hive/hplsql/Hplsql.g4
spark的g4文件如下
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/antlr4/org/apache/spark/sql/catalyst/parser/SqlBase.g4
Presto的g4文件如下
https://github.com/prestodb/presto/blob/master/presto-parser/src/main/antlr4/com/facebook/presto/sql/parser/SqlBase.g4
confluent的kSql的g4文件
https://github.com/confluentinc/ksql/blob/master/ksqldb-parser/src/main/antlr4/io/confluent/ksql/parser/SqlBase.g4
使用了Apache Calcite的parser有Apache Flink,Mybatis,Apache Storm等
Flink的ftl文件如下
https://github.com/apache/flink/blob/master/flink-table/flink-sql-parser/src/main/codegen/includes/parserImpls.ftl
Mybatis的mapper模板生成
https://github.com/abel533/Mapper/blob/master/generator/src/main/resources/generator/mapper.ftl
Storm的ftl文件如下
https://github.com/apache/storm/blob/master/sql/storm-sql-core/src/codegen/includes/parserImpls.ftl
以及使用了flex和cup的impala,如何使用impala的parser来解析query可以参考另一篇文章:使用Impala parser解析SQL
parser的测试用例
https://github.com/cloudera/Impala/blob/master/fe/src/test/java/com/cloudera/impala/analysis/ParserTest.java
源码
https://github.com/apache/impala/blob/master/fe/src/main/jflex/sql-scanner.flex
和
https://github.com/apache/impala/blob/master/fe/src/main/cup/sql-parser.cup
impala也用了少量的antlr
https://github.com/apache/impala/blob/master/fe/src/main/java/org/apache/impala/analysis/ToSqlUtils.java
还有hue使用的jison,jison是JavaScript语言的语法分析器
https://github.com/cloudera/hue/tree/master/desktop/core/src/desktop/js/parse/jison
以hive的Hplsql.g4为例,来解析一句sql
antlr4 Hplsql.g4 javac Hplsql*.java
解析select语句
grun Hplsql r -tokens Warning: TestRig moved to org.antlr.v4.gui.TestRig; calling automatically select * from db1.tb1; [@0,0:5='select',<T_SELECT>,1:0] [@1,7:7='*',<'*'>,1:7] [@2,9:12='from',<T_FROM>,1:9] [@3,14:16='db1',<L_ID>,1:14] [@4,17:17='.',<'.'>,1:17] [@5,18:20='tb1',<L_ID>,1:18] [@6,21:21=';',<';'>,1:21] [@7,23:22='<EOF>',<EOF>,2:0] No method for rule r or it has arguments
可以看到打印出token流
解析建表语句
grun Hplsql r -tokens Warning: TestRig moved to org.antlr.v4.gui.TestRig; calling automatically CREATE TABLE IF NOT EXISTS db1.tb1 ( `f1` string, `f2` bigint, `f3` string, `f4` string, `f5` string) partitioned by(ds string) stored as parquet TBLPROPERTIES ("parquet.compression"="SNAPPY"); [@0,0:5='CREATE',<T_CREATE>,1:0] [@1,7:11='TABLE',<T_TABLE>,1:7] [@2,13:14='IF',<T_IF>,1:13] [@3,16:18='NOT',<T_NOT>,1:16] [@4,20:25='EXISTS',<T_EXISTS>,1:20] [@5,27:29='db1',<L_ID>,1:27] [@6,30:30='.',<'.'>,1:30] [@7,31:33='tb1',<L_ID>,1:31] [@8,35:35='(',<'('>,1:35] [@9,39:42='`f1`',<L_ID>,2:2] [@10,44:49='string',<T_STRING>,2:7] [@11,50:50=',',<','>,2:13] [@12,54:57='`f2`',<L_ID>,3:2] [@13,59:64='bigint',<T_BIGINT>,3:7] [@14,65:65=',',<','>,3:13] [@15,69:72='`f3`',<L_ID>,4:2] [@16,74:79='string',<T_STRING>,4:7] [@17,80:80=',',<','>,4:13] [@18,84:87='`f4`',<L_ID>,5:2] [@19,89:94='string',<T_STRING>,5:7] [@20,95:95=',',<','>,5:13] [@21,99:102='`f5`',<L_ID>,6:2] [@22,104:109='string',<T_STRING>,6:7] [@23,110:110=')',<')'>,6:13] [@24,112:122='partitioned',<L_ID>,7:0] [@25,124:125='by',<T_BY>,7:12] [@26,126:126='(',<'('>,7:14] [@27,127:128='ds',<L_ID>,7:15] [@28,130:135='string',<T_STRING>,7:18] [@29,136:136=')',<')'>,7:24] [@30,138:143='stored',<T_STORED>,8:0] [@31,145:146='as',<T_AS>,8:7] [@32,148:154='parquet',<L_ID>,8:10] [@33,156:168='TBLPROPERTIES',<L_ID>,9:0] [@34,170:170='(',<'('>,9:14] [@35,171:191='"parquet.compression"',<L_ID>,9:15] [@36,192:192='=',<'='>,9:36] [@37,193:200='"SNAPPY"',<L_ID>,9:37] [@38,201:201=')',<')'>,9:45] [@39,202:202=';',<';'>,9:46] [@40,204:203='<EOF>',<EOF>,10:0] No method for rule r or it has arguments
上面介绍了antlr如果解析hive语句,而在hive中使用的就是由antlr编译出来的java代码来解析hive语句
接下来介绍如何使用java代码解析hive语句,首先引用依赖
<dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>1.1.0-cdh5.16.2</version> </dependency>
代码
import com.google.common.collect.Lists; import com.google.common.collect.Maps; import org.apache.hadoop.hive.conf.HiveConf; import org.apache.hadoop.hive.metastore.api.FieldSchema; import org.apache.hadoop.hive.ql.Context; import org.apache.hadoop.hive.ql.lib.*; import org.apache.hadoop.hive.ql.parse.*; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.util.List; import java.util.Map; import java.util.Stack; public class MyProcessor implements NodeProcessor { private static Logger logger = LoggerFactory.getLogger(MyProcessor.class); private static Context context = null; private final static String HDFS_SESSION_PATH_KEY = "_hive.hdfs.session.path"; private final static String LOCAL_SESSION_PATH_KEY = "_hive.local.session.path"; private static String hdfsTemporaryDirectory(HiveConf hiveConf) { return hiveConf.get("hadoop.tmp.dir", "/tmp"); } private static String localTemporaryDirectory() { return System.getProperty("java.io.tmpdir", "/tmp"); } static { HiveConf hiveConf = new HiveConf(); if (hiveConf.get(HDFS_SESSION_PATH_KEY) == null) { hiveConf.set(HDFS_SESSION_PATH_KEY, hdfsTemporaryDirectory(hiveConf)); } if (hiveConf.get(LOCAL_SESSION_PATH_KEY) == null) { hiveConf.set(LOCAL_SESSION_PATH_KEY, localTemporaryDirectory()); } try { context = new Context(hiveConf); } catch (IOException e) { logger.error("Init hive context fail, message: " + e); } } String tableName = ""; List<FieldSchema> fieldSchemas; public void parse(String query) throws ParseException, SemanticException { ParseDriver pd = new ParseDriver(); ASTNode tree = pd.parse(query, context); while ((tree.getToken() == null) && (tree.getChildCount() > 0)) { tree = (ASTNode) tree.getChild(0); } logger.info("start to analyze query: {}, ASTNode: {}", query, tree.dump()); Map<Rule, NodeProcessor> rules = Maps.newLinkedHashMap(); Dispatcher disp = new DefaultRuleDispatcher(this, rules, null); GraphWalker ogw = new DefaultGraphWalker(disp); final List<Node> topNodes = Lists.newArrayList(tree); // 遍历 ogw.startWalking(topNodes, null); // 打印 System.out.println(tableName); System.out.println(fieldSchemas); } @Override public Object process(Node nd, Stack<Node> stack, NodeProcessorCtx procCtx, Object... nodeOutputs) throws SemanticException { ASTNode pt = (ASTNode) nd; switch (pt.getToken().getType()) { case org.apache.hadoop.hive.ql.parse.HiveParser.TOK_CREATETABLE: for (Node node : pt.getChildren()) { ASTNode createTableChild = (ASTNode) node; if (createTableChild.getToken().getType() == HiveParser.TOK_TABNAME) { tableName = BaseSemanticAnalyzer.getUnescapedName(createTableChild); } else if (createTableChild.getToken().getType() == HiveParser.TOK_TABCOLLIST) { fieldSchemas = BaseSemanticAnalyzer.getColumns(createTableChild, true); } } } return null; } }
测试用例,解析了hive的建表语句
import org.junit.Test; public class MyProcessorTest { @Test public void parse() throws Exception{ String query = "create table my_table(id int,name string)row format delimited fields terminated by '\\t'"; MyProcessor processor = new MyProcessor(); processor.parse(query); } }
输出
上面例子中是将hive表名和字段解析出来,其他属性也可以使用类似的方法从语法树中取出
本文只发表于博客园和tonglin0325的博客,作者:tonglin0325,转载请注明原文链接:https://www.cnblogs.com/tonglin0325/p/12212866.html