poj 3264 Balanced Lineup(RMQ裸题)

Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 43168   Accepted: 20276
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include<stdio.h>
#include<string.h>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<math.h>
#include<algorithm>
#define LL long long
#define PI atan(1.0)*4
#define DD double
#define MAX 100100
#define mod 10003
#define INF 0x3f3f3f3f
using namespace std;
int a[MAX];
int n,m;
int Max[MAX][50],Min[MAX][50];
void RMQ()
{
    int i,j;
    for(i=1;i<=n;i++)
        Max[i][0]=Min[i][0]=a[i];
    for(j=1;(1<<j)<=n;j++)
    {
        for(i=1;i+(1<<j)-1<=n;i++)
        {
            Max[i][j]=max(Max[i][j-1],Max[i+(1<<(j-1))][j-1]);
            Min[i][j]=min(Min[i][j-1],Min[i+(1<<(j-1))][j-1]);
        }
    }
}
int find(int l,int r)
{
    int k=0;
    while(1<<(k+1)<=r-l+1) k++;
    return max(Max[l][k],Max[r-(1<<k)+1][k])-min(Min[l][k],Min[r-(1<<k)+1][k]);
}
int main()
{
    int i,j,t,k,c,b;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(i=1;i<=n;i++)
            scanf("%d",&a[i]);
        RMQ();
        while(m--)
        {
            scanf("%d%d",&c,&b);
            printf("%d\n",find(c,b));
        }
    }
    return 0;
}

  

posted @   非我非非我  阅读(175)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示