light oj 1078 - Integer Divisibility
Time Limit: 2 second(s) | Memory Limit: 32 MB |
If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.
For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case will contain two integers n (0 < n ≤ 106 and n will not be divisible by 2 or 5) and the allowable digit (1 ≤ digit ≤ 9).
Output
For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.
Sample Input |
Output for Sample Input |
3 3 1 7 3 9901 1 |
Case 1: 3 Case 2: 6 Case 3: 12
|
题意:给出 n和m,让判断多少位的m可以整除n(每一位的数值都为m,如果当前的位数不能整除n则再加上一位)如:3 1意思是多少个1可以整除3显然111可以整除3,所以就是三位,输出3
小技巧:令ans=m 让ans对n取余为ans(覆盖原来的值),每次让ans=ans*10+m(因为不能整除所以增加位数)直到可以整除 原理大概是除法的同余定理吧
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> #include<math.h> #define LL long long #define DD double #define MAX 10000 using namespace std; int main() { int t; int n,m,j,i; LL ans; scanf("%d",&t); int k=1; while(t--) { scanf("%d%d",&n,&m); printf("Case %d: ",k++); ans=m; int sum=1; while(ans%n) { ans=ans%n; ans=ans*10+m; sum++; } printf("%d\n",sum); } return 0; }