hdoj 4325 Flowers【线段树+离散化】

Flowers

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2616    Accepted Submission(s): 1287


Problem Description
As is known to all, the blooming time and duration varies between different kinds of flowers. Now there is a garden planted full of flowers. The gardener wants to know how many flowers will bloom in the garden in a specific time. But there are too many flowers in the garden, so he wants you to help him.
 

 

Input
The first line contains a single integer t (1 <= t <= 10), the number of test cases.
For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times.
In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
In the next M lines, each line contains an integer Ti, means the time of i-th query.
 

 

Output
For each case, output the case number as shown and then print M lines. Each line contains an integer, meaning the number of blooming flowers.
Sample outputs are available for more details.
 

 

Sample Input
2
1 1
5 10
4
2 3
1 4
4 8
1
4
6
 

 

Sample Output
Case #1:
0
Case #2:
1
2
1
 
题意:给出花的种类n以及m个要查询的时间,接下来n行是每种花的开放区间(其中一些花的开放区间有重合的部分),接下来m个数非别表示要查询的点(查询在这个时间点,有多少种花开放)
 
题解:直接线段树建图的话由于数据达到了10的9次方,数组无法开这么大,这就需要用到离散化
 
离散化:在百科上看到一句很好的话:“离散化就是把连续的量,变成离散的量即变成一个一个的值”,例如区间(1,100)由于这是一个实数区间,其中间的值有无数个,如果我们能把它变为1到100内的整数,这样这些数就变成了有限个,即离散了;  ,我们将每个区间的端点都存到一个数组中,然后将这些端点,按照从小到大排列(之后要去除这个数组中重复的点),并建立为与其下标的映射,然后用其下标建树,因为我们只是使用了需要的空间,并没有在整个空间上建树,这样就大大节省了空间和时间,如题中第二个例子,我们将所有数据按照从小到大排列后为1 2 3 4 6 8 分别对应下标1 2 3 4 5 6,此题数据小我们看不出明显的差别,但是如果数据中有区间(1000,10000),那差别马上就出来了,比如我们把题中的区间(4,8)换做(1000,10000)那么如果采用离散化思想,我们还是先排列大小 1 2 3 6 1000 10000对应下标1 2 3 4 5 6,我们只需建一棵根为6的树即可,如果不用离散化,我们就需要建造根为10000的树,大大浪费了空间,
 
AC代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define LL long long
#define MAX 100100
using namespace std;
int s[MAX],e[MAX],q[MAX];
int rec[MAX];//记录所有值排序后的下标 
int add[MAX<<2];
int sum[MAX<<2];
int le[MAX],ri[MAX];
void pushup(int o)
{
    sum[o]=sum[o<<1]+sum[o<<1|1];
}
void pushdown(int o,int m)
{
    if(add[o])
    {
        add[o<<1]+=add[o];
        add[o<<1|1]+=add[o];
        sum[o<<1]+=add[o]*(m-(m>>1));
        sum[o<<1|1]+=add[o]*(m>>1);
        add[o]=0;
    }
}
void gettree(int o,int l,int r)
{
    add[o]=0;
    if(l==r)
    {
        sum[o]=0;
        return ;
    }
    int mid=(l+r)>>1;
    gettree(o<<1,l,mid);
    gettree(o<<1|1,mid+1,r);
    pushup(o);
}
void update(int o,int l,int r,int L,int R,int val)
{
    if(L<=l&&R>=r)
    {
        add[o]+=val;
        sum[o]+=val*(r-l+1);
        return ;
    }
    pushdown(o,r-l+1);
    int mid=(l+r)>>1;
    if(L<=mid)
        update(o<<1,l,mid,L,R,val);
    if(R>mid)
        update(o<<1|1,mid+1,r,L,R,val);
    pushup(o);
}
int find(int o,int l,int r,int pos)
{
    if(l==r)
    {
        return sum[o];
    }
    pushdown(o,r-l+1);
    int ans=0;
    int mid=(l+r)>>1;
    if(pos<=mid)
        ans=find(o<<1,l,mid,pos);
    else
        ans=find(o<<1|1,mid+1,r,pos);
    return ans;
}
int query(int l,int r,int pos)//查找输入当前值,在树中对应的位置 
{
	while(r>=l)
	{
		int mid=(l+r)>>1;
		if(rec[mid]==pos)
		    return mid;
		else if(rec[mid]>pos)
		    r=mid-1;
		else
		    l=mid+1;
	}
	return -1;
}
int main()
{
	int t,n,m,k,i;
	scanf("%d",&t);
	k=1;
	int maxx;
	while(t--)
	{
		scanf("%d%d",&n,&m);
		int p=1;
	    for(i=0;i<n;i++)
	    {
	    	scanf("%d%d",&s[i],&e[i]);
	    	rec[p++]=s[i];
	    	rec[p++]=e[i];
	    }
	    for(i=0;i<m;i++)
	    {
	    	scanf("%d",&q[i]);
	    	rec[p++]=q[i];
	    }
	    sort(rec+1,rec+p);//
	    int R=2;
	    for(i=2;i<p;i++)//去除数组中重复的点 
	    {
	    	if(rec[i]!=rec[i-1])
	    	    rec[R++]=rec[i];
	    }
	    sort(rec+1,rec+R);
		gettree(1,1,R-1);//对下标建树 
		for(int i=0;i<n;i++)
		{
			int x=query(1,R-1,s[i]);
			int y=query(1,R-1,e[i]);
			update(1,1,R-1,x,y,1);
		} 
		printf("Case #%d:\n",k++);
		for(i=0;i<m;i++)
		{
			int x=query(1,R-1,q[i]);
			printf("%d\n",find(1,1,R-1,x)); 
		}
	}
}

  

posted @ 2015-11-17 19:31  非我非非我  阅读(454)  评论(0编辑  收藏  举报