poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 9641 | Accepted: 4008 |
Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in Gand we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in Gand we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
Sample Output
1 3 2
定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径;若v不可以到达u,则u到v的路径可有可无。
题意:在n个点m条边的有向图里面,问有多少个点是汇点。
分析:首先若SCC里面有一个点不是汇点,那么它们全不是汇点,反之也如此。这也就意味着一个SCC里面的点要么全是,要么全不是。在求出SCC并缩点后,任一个编号为A的SCC若存在指向编号为B的SCC的边,那么它里面所有点必不是汇点(因为编号为B的SCC不可能存在指向编号为A的SCC的边)。若编号为A的SCC没有到达其他SCC的路径,那么该SCC里面所有点必是汇点。因此判断的关键在于SCC的出度是否为0.
思路:先用tarjan求出所有SCC,然后缩点后找出所有出度为0的SCC,并用数字存储点,升序排列后输出。
#include<stdio.h> #include<string.h> #include<vector> #include<stack> #include<algorithm> #define MAX 21000 #define INF 0x3f3f3f using namespace std; int cost[MAX]; int low[MAX],dfn[MAX]; int head[MAX],instack[MAX]; int ans,n,m; int sccno[MAX],clock;//sccno用来记录当前点属于哪个scc, int scccnt;//记录总共有多少个scc stack<int>s; vector<int>newmap[MAX];//scc缩点之后储存新图 vector<int>scc[MAX];//用来记录scc中的点 int out[MAX];//记录scc的入度 int ant[MAX]; struct node { int beg,end,next; }edge[MAX]; void init() { memset(head,-1,sizeof(head)); ans=0; } void add(int u,int v) { edge[ans].beg=u; edge[ans].end=v; edge[ans].next=head[u]; head[u]=ans++; } void getmap() { int i,j,a,b; for(i=1;i<=m;i++) { scanf("%d%d",&a,&b); add(a,b); } } void tarjan(int u) { int v,i,j; low[u]=dfn[u]=++clock; s.push(u); instack[u]=1; for(i=head[u];i!=-1;i=edge[i].next) { v=edge[i].end; if(!dfn[v]) { tarjan(v); low[u]=min(low[u],low[v]); } else if(instack[v]) low[u]=min(low[u],dfn[v]); } if(low[u]==dfn[u]) { scccnt++; scc[scccnt].clear();//?? while(1) { v=s.top(); s.pop(); instack[v]=0; sccno[v]=scccnt; scc[scccnt].push_back(v); if(v==u) break; } } } void find(int l,int r) { memset(low,0,sizeof(low)); memset(dfn,0,sizeof(dfn)); memset(sccno,0,sizeof(sccno)); memset(instack,0,sizeof(instack)); clock=scccnt=0; for(int i=l;i<=r;i++) { if(!dfn[i]) tarjan(i); } } void suodian() { int i,j; for(i=1;i<=scccnt;i++) { newmap[i].clear(); out[i]=0; } for(i=0;i<ans;i++)//遍历所有的边 { int u=sccno[edge[i].beg];//当前边的起点 int v=sccno[edge[i].end];//当前边的终点 if(u!=v)//因为sccno中记录的是当前点属于哪个scc,所以u!=v证明不在同一个scc但是由一条边相连, { //证明这两个scc联通 newmap[u].push_back(v);//将scc中的点储存下来 ?? out[u]++;//两个scc联通 则入度加一, } } } void solve() { int i,j,k=0; for(i=1;i<=scccnt;i++) { if(out[i]==0) { for(j=0;j<scc[i].size();j++) ant[k++]=scc[i][j]; } } sort(ant,ant+k); for(i=0;i<k;i++) { if(i<k-1) printf("%d ",ant[i]); else printf("%d",ant[i]); } printf("\n"); } int main() { int j,i; while(scanf("%d",&n),n) { scanf("%d",&m); init(); getmap(); find(1,n); suodian(); solve(); } return 0; }