如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5930    Accepted Submission(s): 4146


Problem Description
As we know, Big Number is always troublesome. But it's really important in our ACM. And today, your task is to write a program to calculate A mod B.

To make the problem easier, I promise that B will be smaller than 100000.

Is it too hard? No, I work it out in 10 minutes, and my program contains less than 25 lines.
 

 

Input
The input contains several test cases. Each test case consists of two positive integers A and B. The length of A will not exceed 1000, and B will be smaller than 100000. Process to the end of file.
 

 

Output
For each test case, you have to ouput the result of A mod B.
 

 

Sample Input
2 3
12 7
152455856554521 3250
 

 

Sample Output
2
5
1521
 
此题需要用到同余定理:
   常用的同余定理有以下三种:
   (1)((A mod m)*(B mod m))mod m ==(A*B)mod m
   (2)((A mod m)+(B mod m))mod m ==(A+B)mod m
   (3)((A mod m)-(B mod m)+ m)mod m ==(A-B)mod m
    在减法中,由于a mod n 可能小于b mod n,需要在结果上加上n.
   我们先了解下如何运用同余定理求余数:
   对大数求余数:
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*例如10000对m求余:
* 10000%m
* ==(10%m*1000%m)%m
* ==(10%m*(10%m*100%m)%m)%m 
* ==(10%m*(10%m*(10%m*10%m)%m)%m)%m
* 用代码表示就是:
* 假设10000是字符串长度是len
*/
 
/*
* 如123对m求余
* 123%m
* ==((12%m*10%m)%m+3%m)%m
* ==(((10%m+2%m)%m*10%m)%m+3%m)%m
* ==((((1%m*10%m)%m+2%m)%m*10%m)%m+3%m)%m
*/
gets(str);
int ans=0;
for(i=0;i<len;i++)
{
    ans=ans*10+str[i];
    ans=ans%m;
}

 对幂求余数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*
* 对幂取模如对37的4次方取模
* (37*37*37*37)%m
*  ==(37%m*(37*37*37)%m)%m
*  ==(37%m*(37%m*(37*37)%m)%m)%m
*  ==(37%m*(37%m*(37%m*37%m)%m)%m)%m
*/
//求n^m%1000
s=n;
for(i=1;i<m;i++)
{
    s=s*n;
    s=s%1000;  
}

 

详细的模运算请参考:http://blog.csdn.net/chocolate_22/article/details/6458029

此题用到了(1)(2)两个:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include<stdio.h>
#include<string.h>
#define MAX 1100
int main()
{
    int n,m,j,i,s,t;
    char p[MAX];
    while(scanf("%s",p)!=EOF)
    {
        scanf("%d",&n);
        int l=strlen(p);
        s=0;
        for(i=0;i<l;i++)
        {
            s=s*10+p[i]-'0';
            s=s%n;
        }
        printf("%d\n",s);
    }
    return 0;
}

 

posted @   非我非非我  阅读(788)  评论(0编辑  收藏  举报
编辑推荐:
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
阅读排行:
· C# 13 中的新增功能实操
· Ollama本地部署大模型总结
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(4)
· langchain0.3教程:从0到1打造一个智能聊天机器人
· 用一种新的分类方法梳理设计模式的脉络
点击右上角即可分享
微信分享提示