hdoj 2682 Tree
Tree
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1861 Accepted Submission(s):
545
Problem Description
There are N (2<=N<=600) cities,each has a value
of happiness,we consider two cities A and B whose value of happiness are VA and
VB,if VA is a prime number,or VB is a prime number or (VA+VB) is a prime
number,then they can be connected.What's more,the cost to connecte two cities is
Min(Min(VA , VB),|VA-VB|).
Now we want to connecte all the cities together,and make the cost minimal.
Now we want to connecte all the cities together,and make the cost minimal.
Input
The first will contain a integer t,followed by t
cases.
Each case begin with a integer N,then N integer Vi(0<=Vi<=1000000).
Each case begin with a integer N,then N integer Vi(0<=Vi<=1000000).
Output
If the all cities can be connected together,output the
minimal cost,otherwise output "-1";
Sample Input
2
5
1
2
3
4
5
4
4
4
4
4
Sample Output
4
-1
敲代码时有一个小地方没看到 结果一直RE纠结了俩小时,所以说要细心............
prime算法:
#include<stdio.h> #include<math.h> #define INF 0x3f3f3f #define max 650 #include<string.h> int lowdis[max],visit[max],map[max][max]; int city; int sushu[1000100]; void prime() { int j,i,min,mindis=0,next; memset(visit,0,sizeof(visit)); for(i=1;i<=city;i++) { lowdis[i]=map[1][i]; } visit[1]=1; for(i=2;i<=city;i++) { min=INF; for(j=1;j<=city;j++) { if(!visit[j]&&min>lowdis[j]) { next=j; min=lowdis[j]; } } if(min==INF) { printf("-1\n"); return ; } visit[next]=1; mindis+=min; for(j=1;j<=city;j++) { if(!visit[j]&&lowdis[j]>map[next][j]) { lowdis[j]=map[next][j]; } } } printf("%d\n",mindis); } int min(int a,int b) { if(a>b) a=b; return a; } void biao() { int i,j; memset(sushu,0,sizeof(sushu)); for(i=2;i<=1000100;i++) { if(!sushu[i]) { for(j=i*2;j<=1000100;j+=i) sushu[j]=1; } } sushu[1]=1; } int main() { int n,i,j; int a[max]; scanf("%d",&n); biao(); while(n--) { scanf("%d",&city); for(i=1;i<=city;i++) { scanf("%d",&a[i]); for(j=1;j<=city;j++) { if(i==j) map[i][j]=0; else map[i][j]=map[j][i]=INF; } } for(i=1;i<=city;i++) { for(j=i+1;j<=city;j++) { if(!sushu[a[i]]||!sushu[a[j]]||!sushu[a[i]+a[j]]) { map[i][j]=map[j][i]=min(min(a[i],a[j]),abs(a[i]-a[j])); } } } prime(); } return 0; }