P8 不同类型的RNNs

之前看到的识别名字的NLP案例,是输入和输出长度相同的一个RNN模型

实际上,还有很多其他种类的RNN模型

输入的x和输出的y可以是不同类型的数据,而且Tx和Ty不一定相等。


一对多 递归神经网络

例子:音乐生成器

输入的x可能只是一串数字,一个音符,一些文本或关键词

为了告诉你你想要的旋律,生成的音乐的第一个音符,想要的音乐特点或类型

这就是一个一对多的RNN。

当然还有一对一,多对一,多对多型的RNN


如果说多对多的输入长度和输出长度不同的话

输入和输出分为了两个部分进行,输入部分和神经网络组成了编码器的部分,神经网络和输出部分组成了解码器的部分。

这就是多对多RNN的计算模式。


 

多对一的话,比如输入很多句影评,输出对电影的评级打分。

 

posted @ 2024-01-02 14:53  静听微风tom  阅读(4)  评论(0编辑  收藏  举报