HDU 5234 Happy birthday --- 三维01背包
题目大意:给定n,m,k,以及n*m(n行m列)个数,k为背包容量,从(1,1)开始只能往下走或往右走,求到达(m,n)时能获得的最大价值
解题思路:dp[i][j][k]表示在位置(i,j)有一个容量为k的背包所能获得的最大价值
决策:a[i][j]处的数是否选取
不选取: dp[i][j][k]= max(dp[i-1][j][k], dp[i][j-1][k])
选取:首先要求k >=a[i][j],那么dp[i][j][k] = max(dp[i-1][j][k-w[i][j]], dp[i][j-1][k-w[i][j]]);
相当于求四者的最大值,最后dp[m][n][k]即为所求结果
/* HDU 5234 Happy birthday --- 三维01背包 */ #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 105; int w[maxn][maxn]; int dp[maxn][maxn][maxn]; int n, m, V; int main() { #ifdef _LOCAL freopen("D:\\input.txt", "r", stdin); #endif //n行m列容量为V while (scanf("%d%d%d", &n, &m, &V) == 3){ for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ scanf("%d", w[i] + j); }//for(j) }//for(i) memset(dp, 0, sizeof dp); for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ for (int k = 0; k <= V; ++k){ //w[i][j]不取的时候 int a = max(dp[i - 1][j][k], dp[i][j - 1][k]); int b = 0; //k > w[i][j], w[i][j]取的时候 if (k - w[i][j] >= 0){ b = max(dp[i - 1][j][k - w[i][j]], dp[i][j - 1][k - w[i][j]]) + w[i][j]; } dp[i][j][k] = max(a, b); } }//for(j) }//for(i) printf("%d\n", dp[n][m][V]); } return 0; }