acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy
GCD SUM
Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others)
Problem Description
给出N,M
执行如下程序:
long long ans = 0,ansx = 0,ansy = 0;
for(int i = 1; i <= N; i ++)
for(int j = 1; j <= M; j ++)
if(gcd(i,j) == 1) ans ++,ansx += i,ansy += j;
cout << ans << " " << ansx << " " << ansy << endl;
执行如下程序:
long long ans = 0,ansx = 0,ansy = 0;
for(int i = 1; i <= N; i ++)
for(int j = 1; j <= M; j ++)
if(gcd(i,j) == 1) ans ++,ansx += i,ansy += j;
cout << ans << " " << ansx << " " << ansy << endl;
Input
多组数据,每行两个数N,M(1 <= N,M <= 100000)。
Output
如题所描述,每行输出3个数,ans,ansx,ansy,空格隔开
Sample Input
5 5 1 3
Sample Output
19 55 55 3 3 6
Hint
总数据小于50000
对于第一个数字比较容易,用莫比乌斯反演直接就能做。
对于ansx,和ansy是同类问题。现在讨论ansx的做法.
我们设f(d) 代表1<=x<=N,1<=y<=M,gcd(x,y)=d 时,x的求和.
我们设F(d) 代表 1<=x<=N,1<=y<=M,gcd(x,y)为d的倍数时,x的求和
所以F(1) = f(1)+f(2)+f(3)......f(min(N,M))
F(2) = f(2)+f(4)+f(6)....f(min(N/2,M/2));
F(i) = f(i)+f(i*2)+f(i*3)....f(min(N/i,M/i));
由此我们可得
由于d = 1 ;所以
对于的反演为
然后可以对mu[i]*i进行筛选,求前N项和。用分块来完成。
代码:
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 typedef long long LL; 7 8 const int maxn = 1e5+3; 9 bool s[maxn]; 10 int prime[maxn],len = 0; 11 int mu[maxn]; 12 LL hxl [maxn]; 13 int sum1[maxn]; 14 void init() 15 { 16 memset(s,true,sizeof(s)); 17 mu[1] = 1; 18 for(int i=2;i<maxn;i++) 19 { 20 if(s[i] == true) 21 { 22 prime[++len] = i; 23 mu[i] = -1; 24 } 25 for(int j=1;j<=len && (long long)prime[j]*i<maxn;j++) 26 { 27 s[i*prime[j]] = false; 28 if(i%prime[j]!=0) 29 mu[i*prime[j]] = -mu[i]; 30 else 31 { 32 mu[i*prime[j]] = 0; 33 break; 34 } 35 } 36 } 37 for(int i=1;i<maxn;i++) 38 sum1[i] = sum1[i-1]+mu[i]; 39 hxl[1] = mu[1]; 40 for(int i=2;i<maxn;i++){ 41 hxl[i] = i*mu[i]+hxl[i-1]; 42 } 43 } 44 int main() 45 { 46 init(); 47 int n,m; 48 while(scanf("%d%d",&n,&m)>0) 49 { 50 LL sum = 0; 51 LL ansi = 0,ansj = 0; 52 int a = n; 53 int b = m; 54 if(a>b) swap(a,b); 55 for(int i=1,la = 0;i<=a;i++,i = la+1) 56 { 57 la = min(a/(a/i),b/(b/i)); 58 sum = sum + ((LL)(a/i))*(b/i)*(sum1[la]-sum1[i-1]); 59 ansi = ansi +(hxl[la]-hxl[i-1])*(((LL)(n/i+1)*(n/i))/2)*(m/i); 60 ansj = ansj +(hxl[la]-hxl[i-1])*(((LL)(m/i+1)*(m/i))/2)*(n/i); 61 } 62 printf("%lld %lld %lld\n",sum,ansi,ansj); 63 } 64 return 0; 65 }