HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵
Matrix multiplication
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1775 Accepted Submission(s):
796
Problem Description
Given two matrices A and B of size n×n, find the
product of them.
bobo hates big integers. So you are only asked to find the result modulo 3.
bobo hates big integers. So you are only asked to find the result modulo 3.
Input
The input consists of several tests. For each
tests:
The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).
The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).
Output
For each tests:
Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
Sample Output
0
0 1
2 1
Author
Xiaoxu Guo (ftiasch)
Source
Recommend
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 7 struct Matrix 8 { 9 int mat[801][801]; 10 }hxl,tom,now; 11 void solve(int n) 12 { 13 int i,j,k; 14 for(i=1;i<=n;i++) 15 { 16 for(k=1;k<=n;k++) 17 { 18 if(hxl.mat[i][k]==0) continue; 19 for(j=1;j<=n;j++) 20 { 21 now.mat[i][j] = now.mat[i][j] + hxl.mat[i][k]*tom.mat[k][j]; 22 } 23 } 24 } 25 for(i=1;i<=n;i++) 26 { 27 for(j=1;j<=n;j++) 28 { 29 if(j==1)printf("%d",now.mat[i][j]%3); 30 else printf(" %d",now.mat[i][j]%3); 31 } 32 printf("\n"); 33 } 34 } 35 int main() 36 { 37 int n; 38 int i,j; 39 while(scanf("%d",&n)>0) 40 { 41 for(i=1;i<=n;i++) 42 for(j=1;j<=n;j++) 43 { 44 scanf("%d",&hxl.mat[i][j]); 45 hxl.mat[i][j]%=3; 46 now.mat[i][j] = 0; 47 } 48 for(i=1;i<=n;i++) 49 for(j=1;j<=n;j++) 50 { 51 scanf("%d",&tom.mat[i][j]); 52 tom.mat[i][j]%=3; 53 } 54 solve(n); 55 56 } 57 return 0; 58 }