山东第四届省赛: Boring Counting 线段树

http://acm.sdibt.edu.cn/JudgeOnline/problem.php?id=3237

Problem H:Boring Counting

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 6  Solved: 2
[Submit][Status][Discuss]

Description

 

 

In this problem you are given a number sequence P consisting of N integer and Pi is the ith element in the sequence. Now you task is to answer a list of queries, for each query, please tell us among [L, R], how many Pi is not less than A and not greater than B( L<= i <= R). In other words, your task is to count the number of Pi (L <= i <= R,  A <= Pi <= B).

 

 

Input

 

 

In the first line there is an integer T (1 < T <= 50), indicates the number of test cases.
       For each case, the first line contains two numbers N and M (1 <= N, M <= 50000), the size of sequence P, the number of queries. The second line contains N numbers Pi(1 <= Pi <= 10^9), the number sequence P. Then there are M lines, each line contains four number L, R, A, B(1 <= L, R <= n, 1 <= A, B <= 10^9)

 

 

Output

 

 

For each case, at first output a line ‘Case #c:’, c is the case number start from 1. Then for each query output a line contains the answer.

 

 

Sample Input

1
13 5
6 9 5 2 3 6 8 7 3 2 5 1 4
1 13 1 10
1 13 3 6
3 6 3 6
2 8 2 8
1 9 1 9

Sample Output

Case #1:
13
7
3
6
9

HINT

 

Source

山东省第四届ACM程序设计大赛2013.6.9

 

 

比赛的时候,没有头绪,今天别人说起划分树,想了一下,还真是可以做的。

但是要一点变形,这样的变形,让我已经看不清 划分树的影子了。

 

划分树----求区间第K 小/大 值

这道题是求区间求区间[l,r]中 满足  A<=xi<=B; xi属于[l,r]。求xi的个数。

如何转化的呢? 

                     枚举区间第k小数==A。此时能求出一个值 hxl

                     枚举区间第K小数==B,此时得到一个值   tom

                     显然满足tom>=hxl。

                     那在这范围的数,是不是就满足了  A<=xi<=B  !~~

这么一说,其实好简单。为什么没有想到呢?  划分树做的时候是求 第 k 小的是什么什么数字,现在换了回来而已,

求的是某个数字是区间里面第几小。

其实有个问题就又来了,A,B在区间[l,r]未必存在,这该怎么办?????

其实上面的说法,不严谨,(求的是某个数字是区间里面第几小。)应该说是求A的下届,B的上届值。

二分枚举,平均的时间会更小。在求下届和上届的过程中也要注意一些细节的问题、

 

 

  1 #include<cstdio> 
  2 #include<iostream> 
  3 #include<cstdlib> 
  4 #include<algorithm> 
  5 #include<cstring> 
  6 #define N 100010 
  7 using namespace std; 
  8   
  9 int toleft[30][N]; 
 10 int Tree[30][N]; 
 11 int Sort[N]; 
 12   
 13   
 14   
 15 void build(int l,int r,int dep) 
 16 { 
 17     int mid=(l+r)/2,sum=mid-l+1,lpos,rpos,i; 
 18     if(l==r) return ; 
 19     for(i=l;i<=r;i++) 
 20         if(Tree[dep][i]<Sort[mid]) sum--; 
 21     lpos=l; 
 22     rpos=mid+1; 
 23     for(i=l;i<=r;i++) 
 24     { 
 25         if(Tree[dep][i]<Sort[mid]) 
 26         { 
 27             Tree[dep+1][lpos++]=Tree[dep][i]; 
 28         } 
 29         else if(Tree[dep][i]==Sort[mid] && sum>0) 
 30         { 
 31             Tree[dep+1][lpos++]=Tree[dep][i]; 
 32             sum--; 
 33         } 
 34         else
 35         { 
 36             Tree[dep+1][rpos++]=Tree[dep][i]; 
 37         } 
 38         toleft[dep][i]=toleft[dep][l-1]+lpos-l; 
 39     } 
 40     build(l,mid,dep+1); 
 41     build(mid+1,r,dep+1); 
 42 } 
 43   
 44 int query(int L,int R,int l,int r,int dep,int k) 
 45 { 
 46     int mid=(L+R)/2,newl,newr,cur; 
 47     if(l==r) return Tree[dep][l]; 
 48     cur=toleft[dep][r]-toleft[dep][l-1]; 
 49     if(cur>=k) 
 50     { 
 51         newl=L+toleft[dep][l-1]-toleft[dep][L-1]; 
 52         newr=newl+cur-1; 
 53         return query(L,mid,newl,newr,dep+1,k); 
 54     } 
 55     else
 56     { 
 57         newr=r+(toleft[dep][R]-toleft[dep][r]); 
 58         newl=newr-(r-l-cur); 
 59         return query(mid+1,R,newl,newr,dep+1,k-cur); 
 60     } 
 61 } 
 62 int EF1(int l,int r,int num,int n) //枚举下届
 63 { 
 64     int low=1,right=r-l+1,mid,tmp; 
 65     mid=(low+right)/2; 
 66     while(low<right) 
 67     { 
 68         tmp=query(1,n,l,r,0,mid); 
 69         if(tmp>=num) 
 70         right=mid-1; 
 71         else low=mid; //!!!!
 72         mid=(low+right+1)/2; //!!! 加了一个1。
 73     } 
 74     return low; 
 75   
 76 } 
 77   
 78 int EF2(int l,int r,int num,int n) 
 79 { 
 80     int low=1,right=r-l+1,mid,tmp; 
 81     mid=(low+right)/2; 
 82     while(low<right) 
 83     { 
 84         tmp=query(1,n,l,r,0,mid); 
 85         if(tmp>num) 
 86         right=mid; //!!!
 87         else low=mid+1; 
 88         mid=(low+right)/2; //木有加1
 89     } 
 90     return low; 
 91 } 
 92   
 93 int main() 
 94 { 
 95     int T,n,m,i,l,r,k,a,b,hxl,tom,qq; 
 96     scanf("%d",&T); 
 97     { 
 98         for(qq=1;qq<=T;qq++) 
 99         { 
100             scanf("%d%d",&n,&m); 
101             memset(Tree,0,sizeof(Tree)); 
102             for(i=1;i<=n;i++) 
103             { 
104                 scanf("%d",&Tree[0][i]); 
105                 Sort[i]=Tree[0][i]; 
106             } 
107             sort(Sort+1,Sort+1+n); 
108             build(1,n,0); 
109             printf("Case #%d:\n",qq); 
110             while(m--) 
111             { 
112                 scanf("%d%d%d%d",&l,&r,&a,&b); 
113                 hxl=query(1,n,l,r,0,1); 
114                 if(a<=hxl) hxl=1; //对临界条件的判断。如果A就是最小的,木有下届
115                 else
116                 { 
117                     hxl=EF1(l,r,a,n); 
118                     hxl++; 
119                 } 
120                 tom=query(1,n,l,r,0,r-l+1); 
121                 if(b>=tom) tom=r-l+1; //如果B是该区间[l,r]最大的,显然木有上届
122                 else
123                 { 
124                     tom=EF2(l,r,b,n); 
125                     tom--; 
126                 } 
127                 hxl=tom-hxl+1; 
128                 printf("%d\n",hxl); 
129             } 
130         } 
131     } 
132     return 0; 
133 } 

 

posted @ 2013-08-14 17:03  芷水  阅读(296)  评论(0编辑  收藏  举报