POJ 1284 Primitive Roots 数论原根。

Primitive Roots
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2479   Accepted: 1385

Description

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

Source

 
 1 /*
 2 定理1:如果p有原根,则它恰有φ(φ(p))个不同的原根(无论p是否为素数都适用)
 3 p为素数,当然φ(p)=p-1,因此就有φ(p-1)个原根
 4 
 5 
 6 数学差的人,很伤不起...
 7 */
 8 
 9 #include<stdio.h>
10 
11 
12 int Euler(int n)
13 {
14     int i,temp=n;
15     for(i=2;i*i<=n;i++)
16     {
17         if(n%i==0)
18         {
19             while(n%i==0)
20             n=n/i;
21             temp=temp/i*(i-1);
22         }
23     }
24     if(n!=1)
25     temp=temp/n*(n-1);
26     return temp;
27 }
28 
29 int main()
30 {
31     int n;
32     while(scanf("%d",&n)>0)
33     {
34         printf("%d\n",Euler(n-1));
35     }
36     return 0;
37 }

 

 
posted @ 2013-08-10 09:25  芷水  阅读(271)  评论(0编辑  收藏  举报