HDU 2588 GCD------欧拉函数变形

GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 812    Accepted Submission(s): 363


Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 

 

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 

 

Output
For each test case,output the answer on a single line.
 

 

Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
 1 /*
 2 题意:求1<=X<=N 满足GCD(X,N)>=M.
 3 
 4 思路:if(n%p==0 && p>=m)  那么gcd(n,p)=p,
 5       求所有的满足与n的最大公约数是p的个数,
 6       就是n/p的欧拉值。
 7       因为与n/p互素的值x1,x2,x3....
 8       满足 gcd(n,x1*p)=gcd(n,x2*p)=gcd(n,x3*p)....
 9       
10       枚举所有的即可。
11 */
12 
13 #include<stdio.h>
14 #include<stdlib.h>
15 #include<string.h>
16 
17 
18 int Euler(int n)
19 {
20     int i,temp=n;
21     for(i=2;i*i<=n;i++)
22     {
23         if(n%i==0)
24         {
25             while(n%i==0)
26             n=n/i;
27             temp=temp/i*(i-1);
28         }
29     }
30     if(n!=1)
31     temp=temp/n*(n-1);
32     return temp;
33 }
34 
35 void make_ini(int n,int m)
36 {
37     int i,sum=0;
38     for(i=1;i*i<=n;i++)//!!
39     {
40         if(n%i==0)
41         {
42           if(i>=m)
43           sum=sum+Euler(n/i);
44           if((n/i)!=i && (n/i)>=m)//!!
45           sum=sum+Euler(i);
46         }
47     }
48     printf("%d\n",sum);
49 }
50 
51 int main()
52 {
53     int T,n,m;
54     while(scanf("%d",&T)>0)
55     {
56         while(T--)
57         {
58             scanf("%d%d",&n,&m);
59             make_ini(n,m);
60         }
61     }
62     return 0;
63 }

 

 
posted @ 2013-08-08 09:31  芷水  阅读(255)  评论(0编辑  收藏  举报